
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL 48, NO I ,  FEBRUARY 2001 125 

Linear Ridge Regression with Spatial Constraint for Generation of Parametric Images in 
Dynamic Positron Emission Tomography Studies 

Yun Zhou’, Sung-Cheng Huang’, Senior Member, IEEE, Marvin Bergsneide? 

UCLA School of Medicine, Los Angeles, CA 90095 

I Department of Molecular and Medical Pharmacology, ’Department of Neurosurgery, 

Abstract 
Due to its siiiiplicity, computational efficiency, and 

reliability, weighted linear regression (WLR) is widely used 
for generation of parametric imaging in positron emission 
tomography (PET) studies, but parametric images estimated 
by WLR usually have high image noise level. To improve the 
stability and signal-to-noise ratio of the estimated parametric 
images, we have added ridge regression, a statistical technique 
that reduces estimation variability at the expense of a small 
bias. To minimize the bias, spatially smoothed images 
obtained with WLR are used a s  a constraint for ridge 
regression. This new algorithm consists of two steps. First, 
parametric images are generated by WLR and are spatially 
smoothed. Ridge regression is then applied using the 
smoothed parametric images obtained in tlie first step as the 
constraint. Since both “generalized” ridge regression and 
“simple” ridge regression are used in statistical applications, 
we evaluated specifically in this study the relative advantages 
of the two when incorporated for generating parametric 
images from dynamic 0- 15 water PET studies. Computer 
simulations of a dynamic PET study with the spatial 
configuration of Hoffman’s brain phantom and a real hiunan 
PET study were used as the data for the evaluation. Results 
reveal ridge regressions improve image quality of parametric 
images for studies with high or middle noise level, as 
compared to WLR. Use of generalized ridge regression offers 
little advantage over that of simple ridge regression. 

I. INTRODUCTION 
The quantification of a physiological activity based on 

dynamically acquired PET studies typically requires curve 
fitting of the measured tissue time-activity curve (TAC). 
Several strategies have been developed to reduce the random 
fluctuations in the TAC. One standard method is to draw a 
large region-of-interest (ROI) and to apply it to the dynamic 
image set. The averaging of pixel values enclosed within each 
ROI reduces the noise level in tlie TAC and therefore 
improves the accuracy and efficiency of the curve-fitting 
regression procedure. Using this so-called “ROI method”, 
either Weighted Linear Regression (WLR) or nonlinear 
regression can be easily and reliably used to estimate model 
parameters (called micro-parameters) defined in the kinetic 
model. Tlie inherent drawback to such an approach is that the 
ROIs must be &awn in advance, a process that may become 
labor intensive. WLR has been used to estimate micro- 
parameters in 0-15 water dynamic PET studies [1-4] and for 

the analysis of spatial heterogeneity of Ga-68 EDTA kinetics 
[SI. For fast generation of myocardial blood flow parametric 
images with N-13 ammonia PET, a Generalized Linear Least 
Squares (GLLS) method has also been developed [6].  

An often-desired alteinative to the above ROI method is 
the generation of a parametric image representing a given 
parameter based on modeling the tracer kinetics in tissue for 
each individual pixel in the iniage plane. However, applying a 
model-dependent regression analysis to the pixel-based TAC 
is fraught with curve-fitting difficulties and with errors 
secondary to high noise levels. Some of the methodologies 
developed to overcome these problems have included 
multiple-time graphical analysis (i.e., “Patlak plot”) [7-81 and 
model-independent linear regression [9]. These techniques, 
however, are limited to estimating only the macro-parameter 
(a combination of the micro-parameters of a tracer kinetic 
model). If micro-parameter estimations are desired, one 
technique to reduce the pixel value variation is to apply spatial 
smoothing either to the dynamic images prior to curve-fitting 
or to the parametric images after the curve-fitting. Spatial 
smoothing, however, often results in an unacceptable loss in 
image resolution as well as in enhancing bias errors. 

Ridge regression has been used in statistics to reduce 
estimation variability of linear regressions at the expense of a 
small bias in the resulted estimates, with the amount of bias 
dependent on tlie noise level of the data [lo-111. Also, 
depending on whether the magnitudes of different parameters 
are scaled to the same level or not, there are “generalized” and 
“simple” ridge regressions [ 121. We have recently explored 
the use of ridge regression for generating parametric image 
from dynamic PET studies. In order to minimize the bias 
introduced by ridge regression, we used spatially smoothed 
parametric images obtained from rebplar WLR as a constraint. 
So, the procedure consists of two steps. First, parametric 
images are generated by WLR and are spatially smoothed. In 
the second step, ridge regession (simple or generalized) is 
applied using the spatially smoothed parametric images 
obtained froni the first step as the constraint. If simple ridge 
regression is used, the method is referred to as simple ridge 
regression with spatial constraint (SRRSC). If generalized 
ridge regression is used, the method is referred to as 
generalized ridge regression with spatial constraint (GRRSC). 
In the present study, we specifically evaluated the relative 
performance of SRRSC and GRRSC for generation of pixel- 
based parametric images from dynamic 0-1 5 water PET data. 
Computer simulations and real PET data were used for the 
evaluation. 
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11. THEORY~~ND METHODS 

A. neory and Algorithm 

1) BrieJ'RevieM~ of Ridge Regression 
Ridge regression was introduced by Hoer1 and Kennard 

[lo-1 11 as a method to limit the impact of spurious data in a 
regression calculation by applying a variable penalty that is 
&pendent on the deviation of data points from the regression 
line. Starting with the standard linear regression equation: 

Y =  X p + e  (1) 
where Y is an nxl observation matrix, X is an nxm matrix 
defining the model. e is the measurement noise with E(e)=O 
and E[ee'] - dl,, I, is an n-dimensional identity matrix, and p 
is an mxl parameter vector to be estimated. Ridge regression 
is usually performed in a transformed space by applying an 
orthogonal transformation T, such that T'T=TT'=I and T'X'XT 
= A is diagonal with its diagonal elements AI. A,, . . , , hr, equal 
to the characteristic root of X'X. By letting 

and 

Eq. (1) may be written as 

Generalized ridge regression finds a parameter vector aH (Eq. 
(5)  below) and a diagonal H matrix (Eq. (6)) that minimizes 
tlie expected mean square error (MSE) of the estimates. 

where H is a diagonal matrix with non-negative diagonal 
elements h,, h,, ..., li',,. A sufficient condition for H to 
minimize the expected MSE of estimates is: 

a = T p  ( 2 )  

Z = X T  (3) 

Y = Z a + e .  (4) 

CY,H= (z 'z+II)- 'z 'Y= (h+II)*'Z'Y (5) 

h, - 02/cx, I <  i <in.  (6) 
If we let all diagonal elements of H to be identical, then we 
have the so-called simple ridge regression estimates: 

ah= (Z'Z + hI,l,)Z'Y =(A f h1,)Z'Y. (7) 
The variable h is usually selected as 

111 fact, h estimated by Eq. (8) can be viewed as the harmonic 
mean of the diagonal elements of H in Eq. (6) [12]. Since the 
true values of (J and a are not known, they are in practice 
estimated fi-om Eq. (4) by WLR. With I1 estimated in 
advance, the ridge regression result can be viewed as the 
parameter vector that minimizes the following cost function 

h - mo2/(a'a). (8) 

Q(CY,H /H) = (Y-za~)'  (Y-a,) f CIH'&XH. (9) 

2) Ridge Regmssion wiflt &)mtiuL C'onscr.nint 
The GRRSUSRRSC procedure consists of two steps. In 

the first step, regular WLR is applied to the kinetics of each 
pixel. The resulted parametric iniage fi is spatially smoothed 
with a filter S, and the smoothed p is denoted as Pb. The noise 
variance of the data (02) for each pixel is estimated fi-om the 

h, = 02!(pl-p51>2 , 
h, = mo'/(@-&)'(P-PJ), 

1 i i S m  for GRRSC, and 
1 5 i S m for SRRSC. 

h, is then also smoothed spatially by filter S. 

The second step applies the ridge regression. As shown in 
the above subsection, ridge regression is equivalent to 
minimizing a cost function (Eq. (9)). For GRRSC/SRRSC, 
we seek to minimize the following cost function. 

Q(PIH) - (Y-XPYW(Y-XP) +<P-PJ 'HWJ , (10) 
where Y is a measured tissue time activity vector. X is 
regression coefficient matrix determined by the tracer kinetic 
model, W is diagonaI matrix and its diagonal element w,, is 
equal to the duration of it" frame of a PET dynamic scanning 
(i.e., W = diag(w,,)). Compared to WLR, the cost fbction of 
GRRSC or SRRSC expressed in Eq. (10) includes an 
aclclitional penalty term. Since the H matrix is proportional to 
the noise variance of the measured data, the penalty term 
automatically adjusts for the noise level of the pixel kinetics. 

If Eq. (10) is converted to a centralized form by letting p1 
= p-p,, Y, = W,Y, and XI = W,X with W, = diag(w,; '), then 
the cost function to be minimized becomes 

and the solution that minimizes the above cost function can 
be determined to be 

QtPIIH) = (y , -xlP,) ' (yl-X,~l)  + P l ' H P I .  

P(H) - (XWX+H)-l(X'WY i HP,) 

P(h) - (X'WX +hI,,)-'(X'WY + hp,), 

(1 1) 

(12) 
For SRRSC, it can be further simplified to 

(13) 
where m is dimension of parameter vector p and L1 is an m- 
dimensional identity matrix. It can be seen fi-om the above 
eq~rations that as H or h tends to zero, GRRSC/SRRSC 
becomes regular WLR. As h or tlie minimwn of the diagonal 
elements of 1% tends to infinity, the restilts of'GRRSC/SRRSC 
will be p\, and the bias introduced by GRRSCBRRSC is 
limited by the spatial constraint pF. 
B. Evaluation tjj? Cornputer Simulation 

The following 2-compartment 3-parameter model was 
used to generate measured 0- 15 water tracer kinetics in brain 
tissue [2, 13, 141: 

cto, = Cdt) VOC,(t) (14) 

where C,(t) is brain tissue radioactivity, C,,, corresponds to the 
measured tissue time activity froin the PET scanner, Ca is 
arterial whole blood 0-15 water time activity, K, is cerebral 
blood flow, k2 is clearance rate constant. The vascular volume 
and dispersion constant are lumped as one parameter V,. To 
apply linear regression algorithm for model panmeter 
estimation, the unobservable C,(t) in Eq. (15) can be 
eliminated by taking the derivative on both sides of Eq. (14) 
and substituting the derivative of Ch(t) with that in Eq. (15). 
The result is shown in Eq. ( 1  6) below. 

residuais of the WLR. Based on the estimated + and P, the dC tot (t) = (K , + k v, a ( - k tot ( t) + v, dCa dt (t) (16) 
diagonal ridge mahix H is calculated as dt 
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By applying boundary condition, C,,(O) = 0, and C,(O) = 0, to 
Eq. (16), the integral form of Eq. ( 16) is given as Eq. (1 7). 

C,,,(t) = (&+k2Vo)jC,ds - k2!CtOtds + VOC, (17) 
Let [J' = [K, +k2V, k2 V,], then Eq. (1 7) can be discretized and 
converted to the form of linear regression model ofEq. (1) as 

Three sets of parameters for gray and white matter were used 
to generate tissue kinetics (see Table 1). 

Tablc 1 : Spatial distribution of paranicters uscd i n  computcr 
simulation. The units of K,. k2, V, are nil/min/g, l/nzin, and nil/& 
respectively. 

For the phantom study, an arterial blood 0-1 5 water time 
activity curve from a human study was used as the input 
function. The simulated dynamic PET scanning sequence was 
6x5, 9x10, and 6x30 seconds. The spatial distribution of the 
gray and white matter follows that of the Hoffman's phantom 
[IS]. Pseudo random noise (normal distributed with variance 
proportional to its mean) with three different noise levels 
(higher: 1 . 2 5 ~ 1 0 ~ ~  middle: 5x106, lower: 10x106 total counts 
per plane over 5 minutes) was simulated in the sinogram. Fifty 
realizations for each noise level were obtained. Dynamic 
images were reconstructed by filtered back projection 
(Haming-filter, 128x128 matrix, pixel size 0.125 cm, cut-off 
at the Nyquist frequency). 2D linear filters with different sizes 
(3x3,5x5, and 7x7: same weighting for all pixels of the filter) 
were used as the spatial smoothing filter. The true parametric 
images were reconstructed from a noise-he sinopam. The 
variance of each parameter estimate at each pixel was defined 
as percent root MSE, 

where p, is the parameter estimate, p is the true value 
reconstructed from the noise-free sinogram and N is the 

number of repeated realizations. In addition, the pixel-wise 
mean, bias, square of bias, variance, and MSE of the estimated 
paranietric images were also calculated for each parameter and 
for each pixel. The ROI average RMSEO/, square of bias, aiid 
variance for gray and white matter were calculated from each 
corresponding image for the three methods: WLR, SRRSC, 
and GRRSC. 

C. Humaii 0-15 Wcifer PET Dynamic Sfudv 
A single study obtained on a control subject was utilized 

for this analysis. A single bolus of 0-15 water (15 niCi) was 
injected intravenously. Dynamic PET scans obtained using a 
SiemendCT1 EXACT HR+ scanner were obtained using the 
following acquisition sequence: 6x5, 9x10, 6x30 sec.(total 5 
minutes, 21 frames). Tlie data were collected in 3-D 
acquisition mode. The dynamic images were reconstructed 
using filtered backprojection with Hanning 0.5 and 0.3 filters 
for evaluating the noise level effects on the parametric images 
(63 planes, matrix size 128x128, pixel size 0.1446 cm, plane 
separation 0.2425 cm). Arterial whole blood was sampled 
during the scan and activity measured in a well counter to give 
the input hct ion.  The Eq. (18) was used to fit the measured 
time activity curves by WLR, GRRSC and SRRSC methods. 
The smoothing filter used to smooth parametric images 
generated by WLR was a 2-D linear filter of 5x5 in size. 

The correction of input function delay was performed 
before parametric itnaging. In dynamic PET study, there is a 
time delay between the peripherally sampled input function 
and the brain tissue radioactivity measurement due to the 
systeinatic time cfifference between the tracer arrival times in 
the brain relative to the peripheral sampling site. For H2I50 
dynamic PET study, the delay of the input function may 
produce a non-negligible error in the model parameter 
estimation. The fast determination of input function delay by 
linear regression method [2] was used in the present study to 
estimate a global time delay value. 

111. RESULTS AND DISCUSSIONS 

A .  Simulution Results 
Table 2 is the average of RMSE% of gray matter, white 

matter, and wliole brain for 3 data sets and 3 noise levels. The 
siiioothing filter with 5x5 window was used in SRRSC and 
GRRSC. Multivariate analysis of variance (MANOVA) 
reveals that the RMSE% for the SRRSC and GRRSC 
estimates are significantly lower than those based on WLR 
estimates (at p=0.01 level). The improvement of estiinate 
accuracy by SRRSC or GRRSC decreases as the noise level 
lessens. The RMSE% of estimates are about 35% less at high 
noise level and 15% less at lower noise level with GRRSC and 
SRRSC as compared to those with WLR for all three data sets. 
The MANOVA analysis also reveals that there is no essential 
difference between SRRSC and GRRSC in terms of the 
RMSEYo. 

The SRRSC aiid GRRSC methods are not sensitive to the 
smoothing filter used on the parameters estimated by WLR. 
The average RMSE% as a function of smoothing filter is 
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11igh WLR 

noise SRRSC 
GIIIISC 

shown in Table 3. There is a nonlinear relationship between 
the M S E %  and smoothing filter used. In this limited 
analysis. the smoothing filter with a 5x5 window gives the 
lowest RMSE%. Fortunately, neither SRRSC nor GRRSC is 
sensitive to the smoothing filter used. 

The MSE consists of bias and variance components. Table 
4 is a summary of MSE analysis for the three methods. Table 
4 shows that the magnitude of bias of estimates increases as 
noise level increases for WLR, SRRSC, and GRRSC. 
Theoretically WLR estimates is not biased while GRRSC and 
SRRSC estimates are biased. However, due to model 
approximation, measurement errors, the estimates are 
generally biased [3]. In the present study, we found that both 
SRRSC and GRRSC have more reduction in variance by 
increasing a little bias, so MSE is decreased. In fact, the 
variance of GRRSC and SRRSC estimates are decreased by 
ridge regression while the bias of estimates of SRRSC and 
GRRSC is limited by the spatial constraint. 

B. Humcm S t d v  Results 
Consistent with the simulation studies, both SRRSC and 

GRRSC provided better image quality for 0-15 water study. 
Figure 1 shows the CBF images estimated by WLR, SRRSC, 
and GRRSC for the one control study. The CBF parametric 
images generated by SRRSC and GRRSC are comparable 
based on visual inspection. The corresponding pixel values of 

Gray rnattcr Whitc matter wholc brain 
K, k* vo K, k2 vo Ki k2 v,, 

43.5 50.2 242.1 72.1 123.3 296.2 52.4 76.0 245.8 
28.2 32.1 179.8 44.7 72.5 218.5 33.0 46. I 184.2 
29.6 36.2 160.7 48.5 83.4 198.7 35.3 52.5 166.0 

set- I 

sct-2 

set-3 

i 

the parametric images derived koni the GRRSC and SRRSC 
methods were highly correlated: 

(20) 
with @ = 0.99. The CBF parametric images for the dynamic 
images reconstriicted with hanning-0.3 filter is shown at the 
bottom of Figure 1. As the noise level is reduced by the use of 
a lower cutoff filter (hanning-0.3) in the image reconstruction. 
the differences among the three methods become small. 

GRRSC(K1) = 0.97SRRSC(KJ + 0.0093 

Iv. SUMMARY AND CONCLUSION 

Computer simulation and human dynamic PET studies 
reveal that both SRRSC and GRRSC improved parametric 
images quality for studies with high or middle noise level of, 
as compared to WLR. GRRSC offers no significant 
improvement in the parametric images as compared to 
SRRSC. For its lower computational burden and its siniplicity, 
SRRSC should be considered as a method of choice for 
generating parametric images for 0- 15 dynamic studies. 
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Table 2: Average RMSE% of gray matter, white matter, and whole brain for 3 data sets and 3 noise levels .The smoothing filtcr with 5x5 
window was used in SRRSC and GRRSC. 
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3x3 
SRRSC sX5 

Gray matter White matter whole brain 

16.9 23.8 96.6 25.8 44.7 116.8 19.4 30.6 98.7 
16.9 23.0 97.6 24.6 42.0 116.2 18.9 29.1 99.0 

K1 k2 Va Kl k? vo Kl k? V(1 

GRRSC 

Table 3: Average of RMSEO6 for SRRSC and GRRSC using filters with 3x3, 5x5, and 7x7 smoothing windows. RMSE% was based on set-1 
simulation data with middle noise lcvd. 

7x7 17.9 23.9 101.7 25.7 43.6 119.3 19.9 30.2 102.5 
32.6 93.2 3x3 17.6 25.4 90.8 27.0 47.6 110.9 20.3 

5x5 17.1 25. I 84.9 26.0 46.6 102.9 19.6 32.1 86.9 
7x7 17.6 25.7 84.8 26.8 48.4 101.8 20.2 33.1 86.4 

Noise 

level 

Hi@ 

Low 

* 
0.0002 0.0009 0.0102 

Fitting 

method5 
WLR 

SRRSC 
GRRSC 

WLR 
SRRSC 
GRRSC 

WLR 
SRRSC 
GRRSC 

0.0003 
0.0002 
0.0001 
0.0001 
0.0000 
0.0000 
0.0000 
0.0000 

~~ ~ 

Table 4: Whole brain avemge of MSE components analysis based on data set-1 simulatious. 

0.0052 0.0056 
0.0044 0.0046 
0.0025 0.0026 
0.0015 0.0016 
0.0012 0.0012 
0.0013 0.0013 
0.0009 0.0009 
0.0006 0.0006 

90 

0 

FigQre I .  CBF (inl/min!100g) images estimated by WLR (left), SRtlSC (middle), and GIlRSC (riglit) froin dynamic images reconstructed with 
hanning-0.5 (tipper row) and haining-0.3 (lower row) in a human study. 
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