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In quantitative dynamic PET studies, graphical analysis methods including the Gjedde–Patlak plot, the Logan
plot, and the relative equilibrium-based graphical plot (RE plot) (Zhou Y., Ye W., Brašić J.R., Crabb A.H., Hilton
J., Wong D.F. 2009b. A consistent and efficient graphical analysis method to improve the quantification of
reversible tracer binding in radioligand receptor dynamic PET studies. Neuroimage 44(3):661–670) are
based on the theory of a compartmental model with assumptions on tissue tracer kinetics. If those
assumptions are violated, then the resulting estimates may be biased. In this study, a multi-graphical analysis
method was developed to characterize the non-relative equilibrium effects on the estimates of total
distribution volume (DVT) from the RE plot. A novel bi-graphical analysis method using the RE plot with the
Gjedde–Patlak plot (RE-GP plots) was proposed to estimate DVT for the quantification of reversible tracer
kinetics that may not be at relative equilibrium states during PET study period. The RE-GP plots and the
Logan plot were evaluated by 19 [11C]WIN35,428 and 10 [11C]MDL100,907 normal human dynamic PET
studies with brain tissue tracer kinetics measured at both region of interest (ROI) and pixel levels. A 2-tissue
compartment model (2TCM) was used to fit ROI time activity curves (TACs). By applying multi-graphical
plots to the 2TCM fitted ROI TACs which were considered as the noise-free tracer kinetics, the estimates of
DVT from the RE-GP plots, the Logan plot, and the 2TCM fitting were equal to each other. For the measured
ROI TACs, there was no significant difference between the estimates of the DVT from the RE-GP plots and
those from 2TCM fitting (p=0.77), but the estimates of the DVT from the Logan plot were significantly
(pb0.001) lower, 2.3% on average, than those from 2TCM fitting. There was a highly linear correlation
between the ROI DVT from the parametric images (Y) and those from the ROI kinetics (X) by using the RE-GP
plots (Y=1.01X+0.23, R2=0.99). For the Logan plot, the ROI estimates from the parametric images were
13% to 83% lower than those from ROI kinetics. The computational time for generating parametric images
was reduced by 69% on average by the RE-GP plots in contrast to the Logan plot. In conclusion, the bi-
graphical analysis method using the RE-GP plots was a reliable, robust and computationally efficient kinetic
modeling approach to improve the quantification of dynamic PET.

© 2009 Elsevier Inc. All rights reserved.
Introduction

In quantitative dynamic PET studies, compartmental modeling
with plasma input is usually considered as the standard approach for a
full analysis of tracer kinetics (Carson, 1986; Gunn et al., 2001; Huang
et al., 1980, 1986; Huang and Phelps, 1986; Koeppe et al., 1991;
Turkheimer et al., 2003). A compartmental model is usually described
by a number of differential equations and parameters for the tracer
kinetic process in vivo. The parameters of a compartmental model are
commonly estimated by fitting the model with measured plasma
input to the measured tissue time activity curves (TACs) using
nonlinear or linear regression. The selection of a specific compart-
ll rights reserved.
mental model requires the knowledge of in vivo tracer biochemical
and physiological processes and the evaluation of model fit. By
focusing on the macro-parameters of tracer kinetics such as uptake
rate constant Ki and total distribution volume (DVT), the laborious and
complicated procedure of the classical compartmental modeling
technique can be remarkably simplified by graphical analysismethods
using the Gjedde–Patlak plot (Gjedde, 1981; Patlak and Blasberg,
1985; Patlak et al., 1983;Wong et al., 1986) and the Logan plot (Logan
et al., 1990). In general, the Gjedde–Patlak plot is used to estimate Ki

for irreversible tracer kinetics, and the Logan plot is used to estimate
DVT for reversible tracer kinetics (Logan, 2003). However, due to the
limited durations of the PET scans, some slowly reversible tracer
kinetics are also considered as approximately irreversible for
graphical analysis using Gjedde–Patlak plot, such as [18F]FDG
(Huang et al., 1980; Zhou et al., 2002) and [11C]PIB dynamic PET
scans (Blomquist et al., 2008; Edison et al., 2009).
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Due to their simplicity, computational efficiency, and readily
apparent visual representation of tracer kinetic behavior, the
graphical analysis methods including the Gjedde–Patlak plot and
the Logan plot have been widely used to quantify dynamic PET data.
The application of the Logan plot is limited by the noise level of tissue
tracer concentration. There are noise-induced negative biases in the
estimates of DVT from the Logan plot, and the underestimation is
dependent on both the noise level and magnitude of the tissue
concentration (Abi-Dargham et al., 2000; Kimura et al., 2007; Slifstein
and Laruelle, 2000). Based on the Logan plot, a few numerical
methods have been proposed to reduce the noise-induced negative
bias but with higher variation in DVT estimates and higher
computational cost (Buchert et al., 2003; Joshi et al., 2008; Varga
and Szabo, 2002; Ogden, 2003).

A relative equilibrium-based graphical analysis method was
recently proposed to improve the pixelwise quantification of [11C]
PIB and [11C]raclopride dynamic PET (Zhou et al., 2009a,b). The
graphical analysis method is based on the assumption that the tissue
tracer kinetics attain an equilibrium relative to the input function for
t≥ t⁎, and the relative equilibrium-based graphical plot (RE plot)
(same as the “Newplot” named in Zhou et al., 2009b) attains a straight
line for t≥ t⁎, where the slope of linear portion (t≥ t⁎) equals the DVT

if plasma input is used. It was shown that the RE plot is a consistent
and computationally efficient graphical analysis method to improve
pixelwise quantification of reversible tracer binding in radioligand-
receptor dynamic PET studies (Zhou et al., 2009b).

For dynamic PET scans with tracers delivered by bolus
administration, reversible tissue tracer kinetics may not attain a
relative equilibrium state during the period of PET scanning. The
violations in the relative equilibrium condition for the RE plot may
result in biased estimates, although its plot could attain a straight
line for t≥ t⁎. In this study, a data-driven multi-graphical analysis
was used to analyze the non-relative equilibrium effects on the
estimates of DVT from the RE plot. A bi-graphical analysis method
using the RE plot with the Gjedde–Patlak plot (RE-GP plots) was
proposed to estimate DVT for the quantification of reversible tracer
kinetics that may not be at relative equilibrium states during the
PET study period. The RE plot, the RE-GP plots, and the Logan plot
were evaluated by 19 [11C]WIN35,428 ([11C]WIN) and 10 [11C]
MDL100,907 ([11C]MDL) normal human dynamic PET studies with
tissue tracer kinetics measured at both region of interest (ROI) and
pixel levels.

Materials and methods

Data-driven multi-graphical analysis for reversible tracer kinetics

The condition for the multi-graphical analysis is that there is t⁎
such that the following three graphical plots attain linearity for t≥ t⁎,

RE plot :

Rt
0
C sð Þds
CP tð Þ = DVRE

Rt
0
CP sð Þds
CP tð Þ + α ð1Þ

Gjedde−Patlak plot :
C tð Þ
CP tð Þ = KP

Rt
0
CP sð Þds
CP tð Þ + β ð2Þ

Logan plot :

Rt
0
C sð Þds
C tð Þ = DVL

Rt
0
CP sð Þds
C tð Þ + γ ð3Þ

where CP(t) is the tracer concentration in plasma from arterial blood
sampling, C(t) is the tissue tracer concentration at time t, DVRE and
DVL are the distribution volumes estimated by the slope of the linear
portion of the RE plot and the Logan plot, respectively, KP is the slope
of the linear portion of the Gjedde–Patlak plot, and α, β, and γ are the
Y intercepts of the line over the linear segments (t≥ t⁎) for the RE plot,
the Gjedde–Patlak plot, and the Logan plot, respectively. Usually, the
values of α and γ from the RE plot and the Logan plot are negative,
and the value of β is positive.

Note that any one of above three plots can be derived from the
other two graphical plots. Specifically, the Logan plot can be derived
from the RE-GP plots with simple algebraic operations for t≥ t⁎.

Rt
0
C sð Þds
C tð Þ = DVRE − αKP

β

� �Rt
0
CP sð Þds
C tð Þ +

α
β

ð4Þ

Let

DVRE−GP = DVRE − αKP

β
ð5Þ

γRE−GP =
α
β

ð6Þ

and compare Eq. (4) with Eq. (3), we have DVL=DVRE-GP=DVRE−αKP/
β, and γ=γRE-GP=α/β, i.e., the DVL and γ from the Logan plot can be
calculated by the slopes and intercepts from the RE-GP plots.

The abovederivation is basedon thenoise-free tracerkinetics similar
to the derivations of the Gjedde–Patlak plot (Patlak et al., 1983), the
Logan plot (Logan et al., 1990), and the RE plot (Zhou et al., 2009b) from
deterministic compartmental models. Therefore, the DVRE-GP=DVL if
and only if the noise in the tissue tracer kinetics is negligible.

Based on Eq. (5), the DVT estimated by the RE-GP plots can be
decomposed by two components: (1) the first component is
contributed by the relative equilibrium component that can be
estimated by the RE plot as DVRE, and (2) the second component is
contributed by the non-relative equilibrium component DVNRE that
can be estimated by the RE-GP plots as DVNRE=−αKP/β. The DVNRE is
greater than 0 if the tracer clearance from tissue is slow relative to
plasma (KPN0), and less than 0 if the tracer clearance from tissue is
fast relative to plasma (KPb0) for t≥ t⁎. The DVNRE is zero if and only if
KP=0, i.e., the DVRE=DVL if and only if the tracer kinetics attains
relative equilibrium for t≥ t⁎.

DVT images generated by the RE-GP plots

Due to the high noise levels of pixel tracer kinetics, the parametric
images of KP and β generated by the Gjedde–Patlak plot are usually of
high statistical variation. In addition, since division is not a stable
operation (Lange et al., 1999), the high variance of KP and β can result
in the large error propagation in the pixelwise calculation of DVT using
Eq. (5) that is associated with the division of −αKP/β. On the other
hand, it has been shown that both the RE plot and the Gjedde–Patlak
plot are consistent graphical methods in term of following two
characteristics: (1) the statistical expectations of the slope and
intercept from graphical plot with given input are independent of
the noise of the target tissue concentration measured by PET; and (2)
the slope and the intercept from theROI TAC are identical to those from
the parametric images (Zhou et al., 2009b). Therefore, Eq. (7) below
was proposed to generate the DVT images using the RE-GP plots.

DVT = DVRE − αsKP

sβ
ð7Þ

where sKP and sβ are obtained by applying a spatial linear smoothing
filter to the images of KP and β. A 2-D spatial smoothing mean filter
(squaremaskwindow, equalweighting for all pixels) is usually selected
for high noise level of dynamic PET images (Zhou et al., 2003).

Applications to human dynamic PET studies

To investigate the effects of non-relative equilibrium tissue tracer
kinetics on the estimates of DVT from the RE plot, [11C]WIN and [11C]
MDL dynamic PET studies for brain imaging of healthy volunteers



Fig. 1. The mean±standard deviation of C(t)/CP(t) as a function of time post tracer
injection for [11C]WIN (n=19) (A) and [11C]MDL (n=10) (B). The C(t) is the tissue
tracer concentration obtained by applying ROIs to the reconstructed dynamic images,
and CP(t) is the metabolite-corrected tracer concentration in plasma. All plots of mean
C(t)/CP(t) were increasing for t≥42.5 min except the plot for [11C]WIN cerebellum
attained a constant level.
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were collected in this study. There were 19 (6 females, 13 males, age
29.0±7.9 (mean±standard deviation hereafter) with range of 18 to
47 years) subjects for [11C]WIN PET scans, and 10 subjects (5 female, 5
male, age 33.2±8.2 with range of 21 to 44 years) for [11C]MDL PET
scans. While [11C]WIN was used for in vivo imaging dopamine
transporter density (Cumming et al., 1999; Frost et al., 1993), [11C]
MDL was used for imaging serotonin 5-HT2A receptor density
(Gründer et al., 1997; Hall et al., 2000; Lundkvist et al., 1996). All
dynamic PET scans were performed on a GE Advance scanner. The PET
scanning was started immediately after the intravenous bolus tracer
injection of 18.4±1.4 mCi (range 15.8 to 21.6 mCi) with high specific
activity of 23723.7±45842.3 mCi/μmol (range 3925.7 to
191837.0 mCi/μmol) for [11C]WIN, and 18.2±4.1 mCi (range 12.8
to 20.8 mCi) with high specific activity of 12775.7±14786.9 mCi/
μmol (range 2774.0 to 52780.7 mCi/μmol) for [11C]MDL at time of
injection. Metabolite-corrected plasma input functions were obtained
for each study by arterial blood sampling. Dynamic PET data were
collected in 3-D acquisition mode with protocols of 4×0.25, 4×0.5,
3×1, 2×2, 5×4, 12×5 min (total 90 min, 30 frames) for all scans. To
minimize head motion during PET scanning, all participants were
fitted with thermoplastic face masks for the PET imaging. Ten-minute
68Ge transmission scans acquired in 2-D mode were used for
attenuation correction of the emission scans. Dynamic images were
reconstructed using filtered back projection with a ramp filter (image
size 128×128, pixel size 2×2 mm2, slice thickness 4.25 mm), which
resulted in a spatial resolution of about 4.5 mm full-width at half-
maximum (FWHM) at the center of the field of view. The decay-
corrected reconstructed dynamic images were expressed in μCi/mL.
Structural magnetic resonance images (MRIs) (124 slices with
image matrix 256×256, pixel size 0.94×0.94 mm2, slice thickness
1.5 mm) were also obtained with a 1.5 Tesla GE Signa system for
each subject. MRIs were co-registered to the mean of all frames'
dynamic PET images using SPM2 with mutual information method.
Three ROIs of caudate, cerebellum, and putamen for [11C]WIN, and
eleven ROIs of caudate, cerebellum, cingulate, occipital, orbital
frontal, parietal, prefrontal, putamen, superior frontal, lateral
temporal, and thalamus for [11C]MDL were manually drawn on
the co-registered MRIs. ROIs defined on MRIs were copied to the
dynamic PET images to obtain ROI TACs.

DVT estimated from ROI kinetics

A two-tissue five-parameter ([K1, k2, k3, k4, VP]) compartment
model (2TCM) in sequential configuration (Koeppe et al., 1991;
Huang et al., 1986; Innis et al., 2007) was used in [11C]WIN and [11C]
MDL dynamic PET studies for ROI kinetic modeling (Brownell et al.,
1999; Hinz et al., 2007; Ichise et al., 2002; Ito et al., 1998; Watabe et
al., 2000;Wong et al., 1993; Zhou et al., 2004), and the cerebellumwas
identified as the reference tissue for the quantification of [11C]WIN
and [11C]MDL specific binding. To reduce the variation of DVT

resulting from the estimates of k4, a nonlinear model fitting algorithm
with k4 coupled over all ROIs for each dynamic PET study (Cunning-
ham et al., 2004; Zhou et al., 2007) was performed by following three
steps. Step1: five parameters ([K1, k2, k3, k4, VP]) of the 2TCM model
were estimated for all ROI TACs by conventional nonlinear regression
with the same initial estimates of ([0.1 0.05 0.01 0.05 0.05]). Step2:
The initial estimates for each ROI were updated by the means of
estimates over all PET scans, and five parameters of the 2TCM were
then re-estimated using the updated initial values for nonlinear
regression. Step 3: The estimates from the step 2 were then adjusted
by one more nonlinear regression using step 2, but the mean of k4
estimates from the step 2 over all ROIs of each subject was fixed
during nonlinear regression. A Marquardt algorithm (Marquardt,
1963) was used for nonlinear regression to minimize least squares.
The DVT estimated by the 2TCM from ROI TACs was calculated as (K1/
k2)(1+k3/k4)+VP after model fitting. Akaike Information criterion
(AIC) (Akaike, 1976; Turkheimer et al., 2003; Zhou et al., 2007) was
calculated after model fitting at Step 2 and model fitting with k4
coupling (Step 3). The AIC and the percent of coefficient of variation of
DVT estimation were used to evaluate the performance of nonlinear
model fitting.

The plot of time t versus C(t)/CP(t) was used to evaluate the
constancy of C(t)/CP(t) for t≥ t⁎ for the relative equilibrium condition
of tissue kinetics (Zhou et al., 2009b). The RE plot, the Gjedde–Patlak
plot, and the Logan plot were applied to all measured ROI TACs with
t⁎=40 min. To evaluate the noise effects on the estimates from
graphical plots, the three graphical plots were also applied to the
2TCM fitted ROI TACs of noise-free tissue tracer kinetics. Eq. (5) was
used for the DVT estimated by the RE-GP plots.

Parametric images generated by the RE-GP plots

The RE plot, the Gjedde–Patlak plot, and the Logan plot were
applied to pixelwise kinetics. Eq. (7) was used for the DVT images to
be generated by the RE-GP plots. Two 2-D spatial smoothing filters,
one using window size 7×7 pixel2 for [11C]WIN and the other using
window size 9×9 pixel2 for [11C]MDL were selected empirically in
this study.

The tracer binding potential (BP), an index of reversible specific
binding in radioligand receptor PET studies, was calculated as
BP=DVT/DVT(cerebellum)−1, where the DVT(cerebellum) is the
DVT of reference tissue (cerebellum) and is used for the DV of free plus
nonspecific binding (Huang et al., 1986; Koeppe et al., 1991;Mintun et
al., 1984; Innis et al., 2007; Zhou et al., 2009b).



Fig. 2. Typical tissue time activity curves from a [11C]WIN and a [11C]MDL human
dynamic PET studies. The fitted curves were obtained by a 2-tissue 5-parameter ([K1, k2,
k3, k4, VP]) compartment model (2TCM) fitting with plasma input. A nonlinear
regression algorithm with k4 coupled over all ROIs was used for model fitting (see
Materials and methods).

2950 Y. Zhou et al. / NeuroImage 49 (2010) 2947–2957
Results

Non-relative equilibrium of tissue tracer kinetics

The ratio (C(t)/CP(t)) of the ROI concentration to the plasma input
increased as a function of time in all the ROIs in the [11C]MDL studies,
but only in the caudate and the putamen in the [11C]WINstudies (Fig. 1).
In the [11C]WIN studies the increased rates of the ratio (slope of
Table 1
Estimates (mean (SD)) obtained by fitting a 2-tissue compartment model to ROI kinetics.

ROI K1 k2 k3

[11C]WIN35,428 human dynamic PET studies (n=19)
Cerebellum 0.347 (0.039) 0.065 (0.006) 0.007 (0.004)
Caudate 0.366 (0.042) 0.077 (0.037) 0.555 (0.179)
Putamen 0.400 (0.037) 0.069 (0.097) 0.504 (0.768)

[11C]MDL100,907 human dynamic PET studies (n=10)
Cerebellum 0.361 (0.051) 0.041 (0.009) 0.073 (0.033)
Caudate 0.401 (0.059) 0.043 (0.022) 0.078 (0.041)
Cingulate 0.413 (0.060) 0.041 (0.036) 0.329 (0.304)
Occipital 0.365 (0.048) 0.046 (0.032) 0.343 (0.264)
Orbital Frontal 0.364 (0.061) 0.035 (0.012) 0.302 (0.199)
Parietal 0.362 (0.049) 0.058 (0.070) 0.422 (0.465)
Prefrontal 0.367 (0.056) 0.027 (0.012) 0.242 (0.222)
Putamen 0.456 (0.058) 0.052 (0.013) 0.093 (0.042)
Superior Frontal 0.370 (0.060) 0.037 (0.012) 0.328 (0.182)
Lateral Temporal 0.349 (0.053) 0.035 (0.007) 0.382 (0.215)
Thalamus 0.418 (0.064) 0.038 (0.016) 0.063 (0.035)
regression) obtained by linear regression of C(t)/CP(t) versus t over
the later time frame [40 90] were significantly (pb0.0001) greater
then zero for all the ROIs except for the cerebellum. Note that the
cerebellum to plasma input concentration ratio was stable with less
than 6% change over the time frame of [40 90] in [11C]WIN studies.

The non-relative equilibrium of tissue tracer kinetics was also
shown by the Gjedde–Patlak plot. The positive slope (KP) of the Patlak
plot demonstrated that the C(t)/CP(t) was increasing as the
normalized time ∫CP(τ)dτ/CP(t) increases (see Table 2).

Two-tissue compartment model fitting for ROI kinetics

Paired TACs from two typical studies with fitted kinetics, one from
reference tissue (cerebellum) of negligible specific binding, and one
from target tissue of high specific binding (putamen for [11C]WIN,
lateral temporal cortex for [11C]MDL),were plotted in Fig. 2. All ROI TACs
werewell fitted consistently by the 2TCMwith k4 coupling. The percent
coefficient of variation (=100×standard deviation/mean) of AIC
was as low as (8.186±2.185)% (n=3) for [11C]WIN and (11.344±
2.210)% (n=11) for [11C]MDL. In contrast to the AICs from 2TCM
model fitting with k4 coupling, the AICs from the 2TCM without k4
coupling decreased (−0.076±2.411)% and (0.532±3.925)% for
[11C]WIN and [11C]MDL, respectively. The percent reductions in AICs
byusing the 2TCMmodelfittingwithoutk4 couplingwerenot significant
for both [11C]WIN (p=0.871) and [11C]MDL (p=0.248) studies.

The micro-parameters of ([K1, k2, k3, k4, VP]) estimated from ROI
TACs using 2TCM model with k4 coupling and macro-parameter DVT

were listed in Table 1. The percent differences (=100×(DVT(no k4
coupling)−DVT(k4 coupling))/DVT(k4 coupling)) between the esti-
mates of [11C]WIN DVT from ROI TACs using 2TCM fitting without k4
coupling and those with k4 coupling were ((−0.173±1.130)%,
(0.080±0.581)%, (0.914±1.474)%) for the ROIs of (cerebellum,
caudate, putamen). The percent coefficients of variation of [11C]WIN
DVT obtained from ROI TACs of (cerebellum, caudate, putamen) using
2TCM fitting without k4 coupling were (8.243%, 17.346%, 12.977%)
and were similar to those from 2TCM fitting with k4 coupling (Table
1). However, there were a few outliers in the estimates of [11C]MDL
DVT obtained by 2TCM fitting without k4 coupling, and the percent
differences between the estimates of [11C]MDL DVT from ROI TACs
using 2TCM fitting without k4 coupling and those with k4 coupling
were ((4.064±5.287)%, (4.540±10.092)%, (0.029±1.490)%,
(11.944±34.445)%, (1.843±3.067)%, (0.182±0.955)%, (5.699±
16.063)%, (12.155±14.550)%, (0.141±0.746)%, (0.796±1.047)%,
(2.479±6.183)%) for the ROIs of (cerebellum, caudate, cingulate,
occipital, orbital frontal, parietal, prefrontal, putamen, superior
frontal, lateral temporal, and thalamus). The percent coefficient of
k4 (coupled among all ROIs) VP DVT

0.077 (0.030) (range 0.037–0.155) 0.068 (0.021) 5.963 (0.497)
0.064 (0.021) 41.868 (7.244)
0.073 (0.021) 45.206 (5.517)

0.057 (0.040) (range 0.032–0.162) 0.070 (0.028) 21.210 (2.866)
0.079 (0.047) 25.601 (2.974)
0.080 (0.026) 78.496 (13.956)
0.057 (0.022) 62.305 (11.975)
0.073 (0.027) 69.189 (14.834)
0.060 (0.019) 64.507 (11.947)
0.065 (0.021) 72.667 (18.177)
0.088 (0.046) 24.634 (2.510)
0.057 (0.021) 74.066 (17.510)
0.066 (0.017) 81.613 (16.984)
0.078 (0.033) 26.603 (3.390)
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variation of [11C]MDL DVT obtained from ROI TACs using 2TCM fitting
without k4 coupling was reduced (15.0±23.3)% in 11 ROIs with a
maximum of 57.0% at occipital cortex by using 2TCM model fitting
with k4 coupling.

The DVT estimates from ROI TACs using 2TCM fitting with k4
coupling attained stability when the duration of dynamic PET scan
was at least 60min. There were no significant differences between the
estimates of DVT from 60-min and 90-min dynamic scans with b5%
absolute difference.
Fig. 3. Multi-graphical plots for the measured typical ROI time activity curves from a [11C]W
time points that correspond to the time frames from 40 to 90 min post tracer injection.
Graphical plots for ROI kinetic analysis

The RE plot, the Gjedde–Patlak plot, and the Logan plot were
applied to each ROI TAC. The multi-graphical plots were evaluated
visually and by regular linear regression with statistical analysis. As
demonstrated by Fig. 3, all plots generated from ROI kinetics attained
linearity in the last 10 points corresponding to the PET scanning time t
from 40 to 90min. The R2s (mean±SD) of the linear regression on the
linear portion of graphical plots for (RE plot, Gjedde–Patlak plot,
IN and a [11C]MDL human dynamic PET studies. All plots attained linearity in the last 10



2952 Y. Zhou et al. / NeuroImage 49 (2010) 2947–2957
Logan plot) were (0.998±0.002, 0.813±0.311, 0.986±0.019)
(n=3×19=57) and (0.979±0.025, 0.884±0.229, 0.987±0.018)
(n=10×11=110) for [11C]WIN and [11C]MDL, respectively. The
linear regression of the Gjedde–Patlak plot showed that the KPs for
the TACs of caudate and putamen in [11C]WIN and for all cortical ROI
TACs in [11C]MDL studies were significantly greater than zero (F-test,
pb0.001). The slopes of the linear regression for the Gjedde–Patlak plot
from 7 [11C]WIN cerebellum TACs, and 2 [11C]MDL TACs of caudate,
putamen, thalamus, cerebellum were not significant different from 0,
and R2s of the linear regression were at relative low values (R2b0.5).

The estimates from graphical plots including slope and intercept
from the linear regression were summarized in Table 2. In [11C]WIN
studies, there were no significant differences (b ±1% difference)
between the DVs of cerebellum from the RE plots (DVREs) and those
from the Logan plots (DVLs) or the RE-GP plots, because the KPs for
cerebellum (−0.004±0.010) were not significantly different from 0
(t-test, p=0.07). The [11C]WIN cerebellum kinetics attained relative
equilibrium states for t from 40 to 90 min (see Fig. 1). The values of KP

were significantly greater than 0 for caudate and putamen in [11C]
WIN, and all 11 ROIs in [11C]MDL studies. Therefore, due to the non-
relative equilibrium states in these ROI kinetics, the [11C]WIN DVRE in
(caudate, putamen) was lower ((45.9±6.7)%, (46.8±6.2)%), and
[11C]MDL DVRE was lower from (19.1±9.2) % at cerebellum to (65.2
±6.2) % at lateral temporal cortex, compared to the estimates of DVT

from RE-GP plots.
For the relatively low noise levels of themeasured ROI kinetics, the

DVTs estimated from the Logan plots (DVL, Table 2) were lower
(pb0.001) than those (DVRE-GPs) from the RE-GP plots (Table 2) and
those from 2TCM (Table 1). The values of [11C]WIN DVL in the caudate
and the putamen were lower (3.596±4.421)% and (2.887±2.668)%
than the DVTs from the 2TCM and the RE-GP plots, respectively. The
values of [11C]MDL DVL for all 11 ROIs were (1.952±4.518)% and
(2.461±3.373)% lower than the DVTs from the 2TCM and the RE-GP
plots, respectively. For the measured ROI kinetics, there were no
significant differences between the estimates of DVT from the RE-GP
plots and those from 2TCM fitting (p=0.77). There were highly linear
correlations between the estimates of DVT from the RE-GP plots and
those from 2TCM or the Logan plot for the measured ROI kinetics
(Fig. 4A). The effects of ROI kinetic noise on the DVT estimates from
the graphical plots were demonstrated by Fig. 4A and Fig. 4B. In Fig.
4B, the graphical plots were applied to the fitted ROI TACs for
estimating DVT, where the fitted TACs were obtained by fitting a
2TCM model with k4 coupling to the measured ROI TACs. With given
plasma input function, the 2TCM fitted ROI TACs can be considered
as noise-free ROI kinetics. Therefore, the estimates of DVT from the
Table 2
Estimates (mean (SD)) from ROI kinetics with graphical plots.

ROI RE plot Gjedde–Patlak plot

DVRE −α KP

[11C]WIN35,428 human dynamic PET studies (n=19)
Cerebellum 6.068 (0.535) 133.758 (35.450) −0.004 (0.010)
Caudate 21.975 (3.173) 1110.212 (285.886) 0.152 (0.022)
Putamen 24.212 (3.314) 1217.044 (303.824) 0.170 (0.020)

[11C]MDL100,907 human dynamic PET studies (n=10)
Cerebellum 17.306 (2.430) 1699.938 (440.297) 0.056 (0.025)
Caudate 20.186 (2.933) 2028.418 (519.275) 0.073 (0.028)
Cingulate 31.688 (5.292) 3699.212 (1008.593) 0.223 (0.045)
Occipital 26.957 (3.186) 3103.918 (686.460) 0.185 (0.040)
Orbital Frontal 27.920 (5.481) 3263.843 (966.932) 0.199 (0.045)
Parietal 27.174 (4.464) 3164.216 (885.125) 0.188 (0.040)
Prefrontal 28.455 (5.282) 3331.725 (985.927) 0.204 (0.047)
Putamen 20.512 (2.406) 1985.594 (456.804) 0.067 (0.029)
Superior Frontal 28.627 (5.657) 3368.900 (1028.899) 0.205 (0.048)
Lateral Temporal 27.967 (4.820) 3318.133 (957.878) 0.211 (0.044)
Thalamus 21.056 (2.771) 2096.463 (482.257) 0.070 (0.034)
RE-GP plots were almost identical to those from the 2TCM fitting
and those from the Logan plot for the 2TCM fitted ROI TACs (Fig. 4B).

Parametric images generated by graphical plots

One set of representative parametric images generated by the RE
plot, the Gjedde–Patlak plot, and the Logan plot from a [11C]WIN and a
[11C]MDL dynamic PET studies with MRI images are shown in Fig. 5.
The noise levels of parametric images in Fig. 5 were similar through all
subject studies for each graphical plot. DVT images generated by the
Logan plot were noisier than DVT images generated by the RE-GP
plots, and the DVRE images were of lowest noise levels. The nonzero
pixel values in the KP images demonstrated the non-relative
equilibrium pixel tracer kinetics. The higher KP pixel values, the
higher differences in the pixel values between the DVTs generated by
the RE-GP plots and the DVREs from the RE plot. In contrast to the DVT

images generated by the RE-GP plots, the DVT images generated from
the Logan plot demonstrated remarkably lower values with higher
noise levels. As the noise of pixel kinetics was increased considerably
from the noise level of ROI kinetics, the noise-induced underestima-
tion in the DVT images generated by the Logan plot was much higher
than the underestimation in the DVT from ROI kinetics as described
below.

The DVT parametric images generated by the RE-GP plots and the
Logan plot were compared to those from the ROI kinetics. A highly
linear correlation between the DVTs from the ROI kinetics and those
from the parametric images was obtained with R2=0.99 and
slope=1.01 that was not significantly different from 1 (p=0.23)
(Fig. 6A). By contrast, a poor linear correlation between the DVTs from
ROI kinetics and those from parametric images was demonstrated in
Fig. 6B for the Logan plot. The poor correlations within each tracer
study also resulted from the inconsistencies in the noise-induced
underestimation in the DVT images among the ROIs. The underesti-
mation in the DVT from the parametric images generated from the
[11C]MDL studies was greater than that generated from [11C]WIN
studies for the Logan plot. As shown in Fig. 7A, the DVTs of
(cerebellum, caudate, putamen) from the parametric images were
lower (13%, 52%, 50%) than those from ROI kinetics for the Logan plot
in [11C]WIN studies. The BPs of (caudate, putamen) from parametric
images were lower (50%, 54%) than those from ROI kinetics (Fig. 7B).
Similar results for the [11C]MDL studies are shown in Fig. 8. In contrast
to the DVTs from ROI kinetics, the ROI DVTs from parametric images
were lower from 36% at cerebellum to 74% at lateral temporal cortex
(Fig. 8A); and the BP from parametric images was lower 83% at lateral
temporal cortex for the Logan plot (Fig. 8B).
RE-GP plots Logan plot

β DVRE-GP DVL −γ

7.065 (1.351) 5.986 (0.476) 5.980 (0.478) 18.708 (2.800)
9.044 (2.150) 41.036 (6.532) 39.691 (6.266) 118.454 (19.247)
9.720 (2.264) 45.771 (5.896) 44.607 (5.957) 121.785 (17.258)

23.190 (6.412) 21.551 (3.132) 21.486 (3.162) 73.782 (8.000)
25.350 (7.379) 26.334 (3.895) 24.711 (4.131) 71.893 (9.907)
18.613 (5.854) 76.894 (12.831) 74.773 (13.490) 195.102 (24.510)
16.686 (3.584) 62.102 (11.946) 61.218 (11.737) 183.897 (20.524)
15.656 (5.420) 70.470 (13.031) 68.174 (14.269) 203.428 (15.832)
16.707 (5.295) 63.584 (11.308) 62.838 (11.040) 189.749 (20.133)
15.619 (4.222) 72.524 (16.399) 71.052 (16.786) 207.568 (21.505)
27.076 (7.095) 25.624 (3.254) 24.954 (3.236) 70.609 (7.454)
15.814 (4.670) 72.971 (16.875) 71.661 (17.266) 208.378 (21.592)
13.286 (4.146) 81.858 (16.167) 79.650 (16.920) 244.569 (29.083)
28.132 (7.658) 26.565 (4.051) 26.006 (3.871) 72.885 (8.201)



Fig. 4. The linear correlations among the DVT estimates frommulti-graphical plots and those from 2-tissue compartment model (2TCM) fitting with k4 coupling from 19 [11C]WIN (3
ROIs) and 10 [11C]MDL (11 ROIs) human dynamic PET studies. The DVT estimates frommulti-graphical plots were obtained from the measured (A) and 2TCM fitted ROI time activity
curves (TACs) (B). With given plasma input function, the 2TCM fitted ROI TACs can be considered noise as free ROI kinetics, and the measured ROI TACs were used to evaluate the
effects of low noise levels on the DVT estimates from the Logan plot and the RE plot with the Gjedde–Patlak plot (RE-GP plots).
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The total computation time for the parametric images generated
by the RE-GP plots was 25.3±0.4 s. and 69% less than the time used
by the Logan plot. The computational efficiency of the RE-GP plots
will be significant for the large volume of dynamic PET data and
parametric image estimation in sinogram space (Rahmim et al.,
2009).
Fig. 5. Transverse parametric images generated by multi-graphical plots in a representative
displayed for reference purpose. The DVT images generated by the Logan plot were of higher
plot (RE-GP plots). Due to the noise-induced inconsistent underestimation in the DVT es
decreased. The non-relative equilibrium tracer kinetics was demonstrated by the KP images
by the RE plot was resulted from non-relative equilibrium tracer kinetics observed in both [1

mL/mL units, respectively.
Discussion

Conditions for the Logan plot and the RE-GP plots

The Logan plot, the RE plot, and the RE-GP plots aremainly used for
the quantification of reversible tracer binding. In this study it was
human [11C]WIN and [11C]MDL dynamic PET studies. The MRI and mean images were
noise level and significantly lower than those from the RE plot with the Gjedde–Patlak
timates, the contrast of the DVT images generated by the Logan plot were markedly
from the Gjedde–Patlak plot. The underestimation of DVT in the DVRE images generated
1C]WIN and [11C]MDL studies. The mean and DV images were displayed in μCi/mL and



Fig. 7. The mean±standard error of the ROI DVTs (A) and binding potentials (BPs)
(B) from 19 [11C]WIN normal human dynamic PET studies. The BP was calculated as
DVT/DVT(cerebellum) −1.

Fig. 6. For the RE plot with the Gjedde–Patlak plot (RE-GP plots) (A), there were high
linear correlations between the ROI DVTs from the parametric images and those from
ROI kinetics. The slope of the linear regression was not significantly different from 1
(p=0.23). Due to the noise-induced inconsistent underestimation in the DVTs from the
Logan plot, the correlation between the ROI DVT from parametric images and those
from ROI kinetics was poor (B).

2954 Y. Zhou et al. / NeuroImage 49 (2010) 2947–2957
shown that tracer total distribution volume DVT in tissue estimated
from the RE plot is unbiased if and only if the tissue tracer kinetics
attain equilibrium state relative to plasma input during PET study.
Note that the steady state of tissue tracer kinetics is used to derive
graphical analysis using the Logan plot with plasma input (Logan et
al., 1990), and this condition is stronger than the relative equilibrium
condition for the unbiased estimate of DVT from the RE plot. Due to
the apparent inconsistency between theoretical andmeasured results,
it is necessary to re-derive the Logan plot with appropriate conditions
assumed on the tracer kinetics, although it was also demonstrated by
data and discussed analytically that the steady state of tissue tracer
kinetics is not necessary for the Logan plot (Logan et al., 1990; Logan,
2003; Schmidt and Turkheimer, 2002). The sufficient and necessary
condition for the distribution volume DVL obtained by the Logan plot
with noise-free tissue kinetics to be an unbiased estimates of total
distribution volume DVT is that there is t⁎ such that C(t) follows one-
tissue compartment model, i.e., for a noise-free tissue kinetics,
DVL=DVT if and only if there is t⁎ such that C(t) follows one-tissue
compartment model. Different from previous derivations (Logan,
2003; Kimura et al., 2007), the following theoretical proof for the
sufficient condition of the Logan plot is based on a general
compartment model configuration for reversible tracer kinetics
(Logan et al., 1990; Patlak and Blasberg, 1985; Patlak et al., 1983;
Zhou et al., 2009a,b). For the sufficient condition, assuming all tissue
compartments are reversible and there is t⁎ such that all tissue
compartments attain equilibrium to each other for t≥ t⁎, i.e., tissue
tracer kinetics follow one-tissue compartment model, then the Logan
plot attain a linearity for t≥ t⁎, and the slope of the linear portion
equals the DVT. This can be simply derived as shown below. Based on
the integration form of tracer kinetics described by the Eq. (8) (same
as Eq. 4 in Zhou et al., 2009b)
Z t

0

C sð Þds = −I0K−1Q + VP

� �Z t

0

CP sð Þds + I0K−1A tð Þ ð8Þ

where CP(t) is plasma input function, A(t)=[C1(t), C2(t), … Cm(t)]′,
Ci(t) is the tracer concentration in the ith compartment, ′ is the
mathematical transpose operation, K is the system matrix (mxm)
and its elements are the transport rate constants between
compartments, Q is a mx1column vector of transport rate constants
from vascular space to tissue compartments, I is a mx1 column
vector of ones, and VP is the effective plasma volume in tissue. For
the total tissue tracer concentration C(t) measured by PET, we have
C(t)=ΣCi(t)+VPCP(t)=I′A(t)+VPCP(t). Based on the assumption
that all tissue compartments attain equilibrium to each other, and
VPCP(t) is negligible to C(t) for t≥t⁎, then we have Ci(t)=RiC(t), i=
1, 2, … m, for t≥t⁎, and I′K−1A(t)= I′K−1RC(t)=γC(t), (γ=I′K−1R
is a constant), where R=[R1,…, Rm]′. In addition, −I′K−1Q+



Fig. 8. The mean±standard error of the ROI DVTs (A) and binding potentials (BPs) (B) from 10 [11C]MDL normal human dynamic PET studies. The BP was calculated as
DVT/DVT(cerebellum)−1. Regions of interest (ROI) are numbered as: 1: caudate, 2: cerebellum, 3: cingulate, 4: occipital, 5: orbital frontal, 6: parietal, 7: prefrontal, 8:
putamen, 9: superior frontal, 10: lateral temporal, 11: thalamus.

2955Y. Zhou et al. / NeuroImage 49 (2010) 2947–2957
VP=ΣDVi+VP=DVT, therefore, we have Eq. (9) below that is same
as Eq. (3) for the Logan plot for the noise-free tissue kinetics.
Z t

0

C sð Þds = DVT

Z t

0

CP sð Þds + γC tð Þ ð9Þ

This shows that DVL from the Logan plot equals DVT. For the
necessary condition, it is assumed that the DVT can be obtained by the
Logan plot using Eq. (3). Note that for the noise-free tissue
concentration C(t), DVT and γ obtained by Eq. (3) are identical to
those obtainedby Eq. (9). Takingderivative on the both sides of Eq. (9),
We have Eq. (10) below.

dC tð Þ
dt

=
DVT

−γð ÞCP tð Þ− 1
−γ

� �
C tð Þ ð10Þ

The intercept of the linear regression from the Logan plot is usually
negative, DVT/(−γ) and 1/(−γ) in Eq. (10) can be considered as the
transport rate constant from plasma to tissue and transport rate
constant from tissue to plasma for t≥ t⁎, respectively. This means that
the tissue kinetics follow one-tissue compartment model for t≥ t⁎.
Based on the necessary and sufficient condition for the Logan plot,
if two-tissue compartment model is necessary to describe the tracer
kinetics for t≥ t⁎, then the DVL form the Logan plot (slope of linear
portion of the Logan plot for t≥ t⁎) could also be a biased estimate of
DVT, although the tracer kinetics is noise-free.

Using the RE-GP plots to quantify reversible tracer binding

In this study, the RE plot was extended to a bi-graphical analysis
method using the RE-GP plots to quantify general reversible tracer
binding of slow or fast kinetics relative to plasma input. The RE-GP
plots are more robust to tracer kinetics than the RE plot for estimating
DVT. It was shown that the estimates of DVT obtained by the RE-GP
plots are identical to those from the Logan plot for tissue tracer
kinetics of negligible noise levels. This means that the necessary and
sufficient condition for the unbiased estimate of DVT for the Logan plot
is also the basis for the RE-GP plots. However, in contrast to the Logan
plot, the estimates of DVT from the RE-GP plots are more robust to
noise levels of tissue tracer kinetics, and reliable for generating
parametric images of DVT. For the low noise and low resolution



Fig. 9. Transverse parametric images generated by multi-graphical plots in the representative human [11C]WIN and [11C]MDL dynamic PET studies same as those used in the Fig. 5.
The MRI and mean images were displayed for reference purpose. Different from the Fig. 5, the mean and parametric images were generated from the spatially smoothed dynamic
images, where a 2Dmean filter of 7×7window size and a 2Dmean filter of 9×9window size were used for [11C]WIN and [11C]MDL, respectively. Eq. (5) was used in the RE-GP plots.
The mean and DV images were displayed in μCi/mL and mL/mL units, respectively. As the noise levels of pixel kinetics were markedly reduced by applying spatially smooth filter to
the dynamic images, the DVT images generated by the Logan plot were comparable to those generated by the RE-GP plots. The reduced noise-induced underestimation in the DVT

images obtained by the Logan plot is at a high cost of spatial resolution.
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dynamic PET images, the DVT images generated by the Logan plot and
RE-GP plots are close to the DVT images generated by the RE-GP plots,
and theirmain difference is due to the noise-induced underestimation
in the Logan plot. Fig. 9 illustrates that the DVT images generated by
the Logan plot and the RE-GP plots are comparable as the DVT images
were generated from the spatially smoothed dynamic images for
reducing the noise levels of pixel kinetics, where the two represen-
tative PET studies in Fig. 9 are the same as those presented in Fig. 5.
Due to low noise levels of the spatially smoothed dynamic PET images,
Eq. (5) was used in the RE-GP plots for generation of DVT images. The
resolution of PET images in Fig. 9 was much lower than those in Fig. 5.
Due to partial volume effects resulted from spatially smoothing in
dynamic images, the ROI values in the DVT images generated by the
RE-GP plots were decreased as high as 29%. In contrast to Fig. 5, the
noise-induced underestimation in the DVT images generated by the
Logan plot in Fig. 9 was mostly reduced at the high cost of spatial
resolution. In contrast to the ROI values in the DVT images generated
by the RE-GP plots in Fig. 5, the lower ROI values in the DVT images
generated by the Logan plot in Fig. 9 are due to both partial volume
effects and noise in pixel kinetics.

For the bi-graphical analysis method using the RE-GP plots, the
Gjedde–Patlak (GP) plot is mainly used to estimate the distribution
volume contributed from the tracer kinetics not at relative equilib-
rium states (DVNRE). For example, the KP from the Gjedde–Patlak plot
was recently used as an index to discriminate the patients of
Alzheimer's disease from controls using [11C]PIB dynamic PET
(Blomquist et al., 2008; Edison et al., 2009). One sufficient condition
for the KP obtained by the Gjedde–Patlak plot to be an unbiased
estimate of Ki is that all reversible compartments in tissue attain
effective equilibrium (equilibrium relative to tracer plasma kinetics),
and there is at least one irreversible compartment in tissue. Previous
studies showed that the KP is a biased estimate of Ki if the reversible
compartments are not at relative equilibrium state for t≥ t⁎ (Yu et al.,
1995), or the transport rate constant from the “irreversible”
compartments to the reversible compartments are greater than zero
(Huang et al., 1980; Patlak and Blasberg, 1985).

In summary, non-relative equilibrium was shown in both [11C]
WIN and [11C]MDL kinetics over the usual 90 min PET scan time, and
the non-relative equilibrium tracer kinetics resulted in the underes-
timation of the DVT from the RE plot, and the non-relative equilibrium
induced underestimation can be corrected by a bi-graphical analysis
method using the RE-GP plots. The RE, Gjedde–Patlak, and Logan plots
were applied to the measured ROI kinetics for the time from 40 to
90 min post tracer injection. The estimates of DVT from the RE-GP
plots were identical to those from the Logan plot for the 2TCM fitted
ROIs TACs. For the Logan plot, the ROI estimates from the parametric
images were 13% to 83% lower than those from ROI kinetics, and the
noise-induced underestimation was dependent on both the noise
level of tracer kinetics and the magnitude of DVT and BP. There was a
highly linear correlation between the ROI DVT from the parametric
images (Y) and those from the ROI kinetics (X) by using the RE-GP
plots (Y=1.01X+0.23, R2=0.99). The computational time for
generating parametric images was reduced by 69% on average by
the RE-GP plots in contrast to the Logan plot. In conclusion, the bi-
graphical analysis method using the RE-GP plots was a robust and
computationally efficient kinetic modeling approach to improve the
quantification of noisy dynamic PET data.
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