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Identification of a Novel Member
(GDF-1) of the Transforming Growth

Factor-3 Superfamily

Se-Jin Lee

Carnegie Institution of Washington
Department of Embryology
Baltimore, Maryland 21210

A cDNA clone encoding a new member (designated
GDF-1) of the transforming growth factor-8 (TGFS)
superfamily was isolated from a library prepared
from day 8.5 mouse embryos. The nucleotide se-
quence of GDF-1 predicts a protein of 357 amino
acids with a mol wt of 38,600. The sequence con-
tains a pair of arginine residues at positions 236—
237, which is likely to represent a site for proteolytic
processing. The C-terminus following the presumed
dibasic cleavage site shows significant homology
with the known members of the TGFS superfamily,
matching the other family members at all of the
invariant positions, including the seven cysteine res-
idues with their characteristic spacing. GDF-1 is
most homologous to Xenopus Vg-1 (52%), but is not
likely to be the murine homolog of Vg-1. In vitro
translation experiments were consistent with GDF-1
being a secreted glycoprotein. Genomic Southern
analysis indicated that GDF-1 may be highly con-
served across species. These results suggest that
GDF-1is most likely an extracellular factor mediating
cell differentiation events during embryonic devel-
opment. (Molecular Endocrinology 4: 1034-1040,
1990)

INTRODUCTION

A growing number of polypeptide factors playing critical

roles in regulating differentiation processes during em-
bryogenesis have been found to be structuraily homol-
ogous to transforming growth factor-g (TGFg). Among
these are Mullerian inhibiting substance (MIS) (1), which
causes regression of the Mullerian duct during male
sex differentiation; the bone morphogenetic proteins
(BMPs) (2), which can induce de novo cartilage and
bone formation; the inhibins and activins (3-6), which
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regulate FSH secretion by pituitary cells and which (in
the case of the activins) can affect erythroid differentia-
tion; the Drosophila decapentaplegic gene product ),
which influences dorsal-ventral specification as well as
morphogenesis of the imaginal disks; the Xenopus Vg-
1 gene product (8), which localizes to the vegetal pole
of eggs; and Vgr-1(9), a gene identified on the basis of
its homology to Vg-1 and shown to be expressed during
mouse embryogenesis. In addition, one of the most
potent mesoderm-inducing factors, XTC-MIF, also ap-
pears to be structurally related to TGFS (10, 11). The
TGF@s themselves are capable of influencing a wide
variety of differentiation processes, including adipoge-
nesis, myogenesis, chondrogenesis, hematopoiesis,
and epithelial cell differentiation (for review, see Ref.
12), and at least one TGFB, namely TGFf2, is capable
of inducing mesoderm formation in frog embryos (10).

Here | report the characterization of a new member
of the TGFg superfamily isolated from an 8.5-day-old
mouse embryo cDNA library. This gene, which 1| have
designated GDF-1, is most homologous to Vg-1, but is
not likely to be the murine homolog of Vg-1. The struc-
tural homology between GDF-1 and the other members
of this family as well as its expression in early mouse
embryos suggest that GDF-1 may play an important
role in mediating developmental decisions related to cell
differentiation.

RESULTS AND DISCUSSION
Cloning and Nucleotide Sequence of GDF-1

To identify new members of the TGFS superfamily that
may be important for mouse embryogenesis, a CDNA
library was constructed in AZAP |l using poly(A)-se-
lected RNA from whole embryos isolated on day 8.5
postcoitum (pc). The library was screened with oligo-
nucleotides selected on the basis of the predicted amino
acid sequences of conserved regions among members
of the supertamily. Among 600,000 recombinant phage
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screened were three clones that hybridized with the
single  nondegenerate  27-mer, 5’-GCAGCCA-
CACTCCTCCACCACCATGTT-3’, the complement of
which corresponds to the amino acid sequence
NMVVEECGC. Partial sequence analysis revealed that
the three cDNA clones contained overlapping se-
cuences and were, therefore, likely to represent
nRNAs derived from the same gene, which was des-
ignated GDF-1 (growth/differentiation factor-1). North-
ern analysis of day 8.5 embryonic RNA (which had been
used to prepare the cDNA library) using the GDF-1
probe detected a single predominant mRNA species
approximately 1.4 kilobases (kb) in length (Fig. 1). Be-
cause the original three cDNA isolates were alt smaller
than 1.4 kb, portions of the longest clone were used to
rescreen the cDNA library to isolate a full-length clone.
Hybridizing recombinant phage were seen at a fre-
quency of approximately 1 per 200,000.

The entire nucleotide sequence of the longest cDNA
clone obtained encoding GDF-1 is shown in Fig. 2. The
1387-basepair (bp) sequence contains a single long
open reading frame beginning with an initiating ATG at
nucleotide 217 and potentially encoding a protein of
357 amino acids with a mol wt of 38,600. Up-stream of
the putative initiating ATG are two in-frame stop codons
and no additional ATGs. Nucleotides 1259-1285 show
a 25/27 match with the complement of the oligonucle-
otide selected for the original screening. The 3’ end of
the clone does not contain the canonical AAUAAA

1.4kb— §

Fig. 1. Northern Analysis of Embryonic RNA

Two micrograms of twice poly(A}-selected mRNA isolated
from day 8.5 pc mouse embryos were electrophoresed on
formaldehyde gels, transferred to nitrocellulose, and probed
with GDF-1 cDNA. The assignment of the size of the major
band was based on the mobilities of RNA standards tran-
scribed in vitro.
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1 CCCTTCTCCAGGGACTCTGGCT! GCCAGCAGCTCCGCCTTTCAGATCAATTCTCGACCACC 60

61 CACCT TGCCGCCC 'CTGCCCTCTGGATC, C 'CCCCT 120
121 CCAGGACCTCMAGCACCCCCGACCTM@TCACCAGCCCMGGCCCW 180

181 GCTCCGCTGACTCTCTTGCACACCTCCTGGGAGGMAATGCTCCCTGTCI@CATC&T:T 240
M L P V CBRR

241 TTGCGACCACCTCCTCCTCCTGCTCTTGCTGCCCTC ‘GACCC CC GCCMGC 300
¢ D H L L L L P S TTLAPATPA

301 ATCCAT CCCGCTGCCGCCCTGCTCCAGGTTCTTGGGLTTCCC AGCGCCCCGGAG 360
M G P A A AL L QV LGLP E AP R S

361 CGTCCCCACACACCGACCTGTGCCTCCTGTCATGTGLCGLUTATTCL 420
vV P T H R P V P P

v M ¥ R LUFRRRDP

421 CC CAGAGTGGGACGCCCTCTGCGGCCATGCLAL! GC 430
QEARVGRPLRPCHVEELGVA

481 CGGAAACATTGTGCGCCACATCCCCGACAGCGGTCTGTCCTLL CCGCACAACCCGC 540
GNIVFHIPDSGLSSRPAQPA

541 CAGGACCTCGGGGCTGTGCCCCGAGTGGACAGTCGTCTTTGACCTGTCGMTGTGGAGCC €00
R T S 6 L P E W T v F DL S NV EP
601 CACAGAGCGCCCMCACGCGCGCGCTTAGAGTTGCGGCTGGAGGCTGAGTGTGM‘I‘AC 660
T E R P T R A R E L L EANAETCTETDT
661 AGGAGGGTGGGAGCTMGCGTGGCACTGTGGGCCGACGCAGAGCATCCABGGCCTGAGCT 720
G G W E L S A L WADANMEHMNPGPEL

721 GCTGCGCGTGCCGGCGCCACCAGGCGTGCTCCTGCGCGCWCCTACKGGGGACTGCACT 780
LRVPAPPGVLLRADLLGTAV

781 AGCCGCCMCGCATCAGTGCCCTGTACTGTGCCCCTGGCGCTGTCACTGCRCCC!‘GGGGC 240
AANASVPCTVRLALSLIPGA

841 CACTGCAGCC GCCTGGC CTCCCTGCTGCT GC CCACG 900
TAACG!LAEASLLLVTLDPI
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CCTGTGTCCCTTGCCGCGATTGCGGCGCCACAC CCAGGGTAGAAGT CAGT 960
LCPLPILRRHTEPRVEVGPV

961 GGSCACHGTCGTACCCGACGGTTGCATGTGAGCTTCCGTGAGGWACCGTTG 1020
GTCRTRI\LNVSFI:VGHHIH

1021 GGTGA'I'CGCGCCGCGTGGCTTCCTAGCCAACTTLTGCCACGCCACGTGCWACCOG‘ 1080
VIAPHGFLAHFCOGTCALPI:

1081 AACGC CCGGCGGECCGCCTGCACTCAACCACGCTGTGCTGCGCGCGCTCAT 1140
TLIGPGGPPALN“AVLIALH

1141 GCACGCAGCTGCTCCCACCCCGGGTGCAGGCTCG:CCTGCFGCGTGCCAGAGCGI‘CTATC 1200
HAAAPTPGAGSPCCVPERLS

1201 ACCCATCTCCGTGCTCTTCTTCGACMTAGTG‘CMCGTGGTCCTGCMCTACM 1260
PISVLFTDNSDNVVLIIYED

1261 CATGGTGGT TGCCGT 'CACCCGGGACACCCTT CGCC 1320
M V VDEZCGCR

1321 CCACGCAAAAGCAGGGACT! GTTTGTTCATGTTTTATTGGTGACAAAAAGCTTAAAACAAR 1380

1361 TITGACT 1387

Fig. 2. Sequence of GDF-1

The entire nucleotide sequence of GDF-1 derived from a
single cDNA clone is shown, with the predicted amino acid
sequence below. The poly(A) tail is not shown. Numbers
indicate nucleotide position relative to the 5’ end of the clone.

polyadenylation signal. Sequence analysis at the 3’ end
of four independent cDNA clones (all differing at their
5’ ends) showed that two clones terminated at the
same nucleotide, and the other two clones terminated
at a site seven nucleotides further down-stream (these
clones contained an additional AAAAATT sequence at
the 3’ end).

The predicted amino acid sequence identifies GDF-1
as a new member of the TGFS superfamily. A compar-
ison of the C-terminal 122 amino acids with those of
the other members of this family is shown in Fig. 3A.
The predicted GDF-1 sequence contains all of the in-
variant amino acids present in the other family mem-
bers, including the seven cysteine residues with their
characteristic spacing, as well as many of the other
highly conserved amino acids. In addition, like other
family members, the C-terminal portion of the predicted
GDF-1 polypeptide is preceded by a pair of basic resi-
dues (R-R) at positions 236-237, potentially represent-
ing a site for proteolytic processing. All of the known
members of this family, except MIS, have a cluster of
basic residues approximately 120 amino acids from the
C-terminus, and, at least in the case of TGFfs (1 3, 14),
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inhibins (3, 4, 15, 16), and BMP-2a (2, 17), the mature
form of the protein is known to be generated by cleav-
age at these sites. In the case of MIS, it is known that
cleavage of the protein can occur at a monobasic site
at an analogous position (18).

Figure 3B shows a tabulation of the percentages of
identical residues between GDF-1 and the other mem-
bers of the TGF3 family in the region starting with the
first conserved cysteine and extending to the C-termi-
nus. GDF-1 is most homologous to Vg-1 (52%) and
least homologous to inhibin-a (22%) and the TGFgs
(26-30%). Two lines of reasoning suggest that GDF-1
is not the murine homolog of Vg-1. First, GDF-1 is less
homologous to Vg-1 than are Vgr-1 (59%), BMP-2a
(59%), and BMP-2b (57%). Second, GDF-1 does not
show extensive homology with Vg-1 outside of the C-
terminal portion, and it is known that other members of
this family are highly conserved across species through-
out the entire length of the protein (1, 3, 4, 13, 19, 20).
However, GDF-1 and Vg-1 do share two regions of
limited homology N-terminal to the presumed dibasic
cleavage site, as shown in Fig. 3c. Hence, to my knowl-
edge, this is the first report of the isolation of GDF-1
from any species.

In Vitro Translation of GDF-1 RNA

The predicted GDF-1 sequence is also noteworthy for
the presence of a core of hydrophobic amino acids at
the N-terminus, potentially representing a signal se-
quence, as well as for the presence of a potential N-
glycosylation site at amino acid 191. To determine
whether these sequences are functional and to confirm
that translation initiates as predicted at the first ATG,
in vitro translation experiments were carried out using
a rabbit reticulocyte lysate. As shown in Fig. 4 (lane 2),
translation of fullHength sense GDF-1 RNA, transcribed
and capped in vitro, resulted in a major protein species
with a mol wt of 39.5K, which agreed well with the
predicted mol wt of 38.6K for the translation product
initiating at the most up-stream ATG; no such band
was seen with translation of antisense GDF-1 RNA
(lane 1). Consistent with the interpretation that transia-
tion had initiated at the most up-stream ATG was the
observation that if the starting DNA template contained
a deletion at the 5’ end extending past the first ATG
codon, the resultant translation product was slightly
smaller (lane 4), suggesting that translation in this case
had initiated at the next ATG codon (nucleotide 305).

When full-length GDF-1 RNA was translated in the
presence of dog pancreatic microsomes, some of the
translated product migrated slower than the fulldength
product (lane 3)." This slower migrating species (41K)
could be converted to a 38K form by treatment with
endoglycosidase-H (lane 7), consistent with the 41K
and 38K species representing the glycosylated and
deglycosylated forms, respectively, of the GDF-1 pro-
tein lacking a signal peptide. Furthermore, the 41K
species (uniike the unprocessed 39.5K species) was
resistant to treatment with trypsin in the absence (lane
g), but not in the presence (lane 13), of detergent,
suggesting that the 41K species was protected from
cleavage by its presence within the microsomes. in
contrast, paraliel experiments carried out with protein
translated from a deletion template lacking the signal
sequence showed no shift to a high mol wt species in
the presence of microsomes (lane 5) and no protection
from cleavage by trypsin (lane 11). Taken together,
these data suggest that GDF-1 may be a secreted
glycoprotein like many of the other members of this
superfamily.

Southern Blot Analysis

To determine whether GDF-1 is likely to be a single
copy gene, Southern blot analysis was carried out using
mouse genomic DNA. As shown in Fig. 5, the GDF-1
probe detected a single predominant band in three
different digests of mouse DNA. However, even at high
stringency, additional weakiy hybridizing bands were
detected. These minor bands are not likely to represent
the products of partial digestion, because many of these
bands were smaller than the predominant band, and
the intensities of these minor bands relative to that of
the major band could be enhanced by reducing the
stringency of the washing conditions (data not shown).
Whether these bands represent other known members
of this superfamily or genes more highly homologous
to GDF-1 remains to be determined.

Southern analysis was also extended to DNA isolated

* The band migrating at 39.5K in lane 3 (Fig. 4) is presumed
to represent the unprocessed protein resulting from the relative
inefficiency of processing by the dog pancreatic microsomes.
Consistent with this is the resistance of the 39.5K species to
endoglycosidase-H (lane 7) and the susceptibility of the 39.5K
species to trypsin (lane 9). In addition, the relative ratio of the
intensities of the 41K and 39.5K species in lane 3 varied
depending on the amount of added microsomes (data not
shown).

%

Fig. 3. Comparison of the Predicted GDF-1 Amino Acid Sequence with the Previously Described Members of the TGF8 Superfamily

A, Alignment of the C-terminal amino acid sequence of GDF-1 (beginning at amino acid 236) with the corresponding regions of
Xenopus Vg-1 (8); murine Vgr-1 (9); human BMP-2a, 2b, and 3 (2); Drosophila DPP (7); human MIS (1); human inhibin-«, -8A, and
-6B (19); human TGF81 (13); human TGFA2 (32); human TGFS3 (33, 34); chicken TGFg4 (35); and Xenopus TGFS5 (36). The seven
invariant cysteines are shaded. Dashes denote gaps introduced in order to maximize the alignment. B, Amino acid homologies
among the different members of the superfamily. Numbers represent percent identities between each pair calcutated from the first

conserved cysteine to the C-terminus. C, Homology between GDF-

1 and Vg-1 up-stream of the presumed dibasic cleavage site.

Two different regions are shown. A single gap of one amino acid has been introduced into the Vg-1 sequence in order to maximize
the alignment. Numbers indicate amino acid positions in the respective proteins.
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Fig. 4. In Vitro Translation of GDF-1

Antisense (Iahe 1) or sense (lanes 2-13) RNA, transcribed
and capped in vitro, was translated with a rabbit reticulocyte
lysate in the presence of [*S]methionine with (lanes 3, 5, 7,
9, 11, and 13) or without (lanes 1, 2, 4, 6, 8, 10, and 12) added
dog pancreatic microsomes. Lanes 2 and 3, translation prod-
ucts from a full-length GDF-1 template; lanes 4 and 5, trans-
lation products from a deletion template lacking the putative
signal sequence; lanes 6 and 7, endoglycosidase-H-treated
translation products from a full-length GDF-1 template; lanes
8 and 9, trypsin-treated translation products from a full-length
GDF-1 template; lanes 10 and 11, trypsin-treated translation
products from a deletion template lacking the putative signal
sequence; lanes 12 and 13, translation products from a fuil-
length GDF-1 template treated with trypsin in the presence of
Triton X-100. Samples were analyzed by electrophoresis on a
10% SDS-polyacrylamide gel under reducing conditions, fol-
lowed by fluorography. Equal amounts of products prepared
in a single translation reaction were used for lanes 2, 6, 8, and
12, for lanes 3, 7, 9, and 13, for lanes 4 and 10, and for lanes
5 and 11. Numbers at the /eft indicate sizes of mol wt stand-
ards. The 41K, 39.5K, and 38K positions were calculated
relative to the mobilities of these standards.

from other species. Even at high stringency, the GDF-
1 probe detected a single predominant band in both
hamster and human DNA (Fig. 5), suggesting that GDF-

1 is conserved across species. Moreover, as was seen -

with mouse DNA, additional minor bands could be
detected in both human and hamster DNA at relative
high stringency.

The TGFS superfamily encompasses a group of pro-
teins affecting a wide range of differentiation processes.
Many of these proteins are likely to play key roles in
regulating embryonic development. In addition, some
of these proteins appear to perform important endo-
crine functions in adult animals as well. The predicted
sequence of GDF-1 clearly identifies it as a new member
of this superfamily. By analogy with the other members
of this superfamily, it seems reasonable to hypothesize
that GDF-1 is an extraceliular factor involved in mediat-
ing developmental decisions related to cell differentia-
tion. The expression of GDF-1 in early mouse embryos

Voi4 No.7
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Fig. 5. Genomic Southern Analysis of GDF-1

Ten micrograms of genomic DNA isolated from Chinese
hamster ovary cells (hamster), BNL cells (mouse), or BeWo
cells (human) were digested with EcoRI (E), BamHI (B), or
HindIll (H); electrophoresed on a 1% agarose gel; transferred
to nitrocellulose; and probed with GDF-1. Numbers at the left
indicate sizes (kilobases) of standards. The fanes containing
human DNA were exposed twice as long as the lanes contain-
ing hamster and mouse DNA.

and the in vitro translation experiments showing that
GDF-1 contains a functional signal sequence support
this hypothesis. Also, by analogy with the known mem-
bers of this superfamily, it seems likely that the C-
terminal portion is cleaved from the full-length precursor
and that GDF-1 is active as a dimer. It will be important
to determine whether such cleavage and dimerization
occur and whether GDF-1 is capable of forming heter-
odimers with other related proteins. The high degree of
conservation of GDF-1 across species supports the
notion that GDF-1 may play an essential regulatory role
in the embryo and/or the adult. An elucidation of the
specific role(s) played by GDF-1 during embryogenesis
and/or in adult animals awaits characterization of the
temporal and spatial patterns of GDF-1 mRNA expres-
sion and the functional activities of GDF-1 protein both
in vitro and in vivo.

MATERIALS AND METHODS

Construction and Screening of an 8.5-Day-Old Embryonic
cDNA Library

All embryonic materials were obtained from random matings
of CD-1 mice (Charles River, Wilmington, MA). Mice were
maintained according to the NIH guidelines for care and main-
tenance of experimental animals. The day on which the vaginal
plug was noted was designated day 0.5 pc. Embryos were
dissected out from the uterus, freed of all extraembryonic
membranes, and frozen rapidly. Total RNA was prepared by
homogenization in guanidinium thiocyanate buffer and centrif-
ugation of the fysate through a cesium chioride cushion (21).
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Poly(A}-containing RNA was obtained by twice selecting with
oligo-dT cellulose (22). A cDNA library was constructed in the
A-ZAP i vector using the RNase-H method (23, 24) according
to the instructions provided by Stratagene (La Jolia, CA). 3.2
million recombinant plaques were obtained from 2 ug starting
RNA. The library was screened with the oligonucleotide 5'-
GCAGCCACACTCCTCCACCACCATGTT-3’, which had been
end labeled using polynucleotide kinase. Hybridization was
carried out in 6 X SSC, 1 X Denhardt's, 0.05% sodium
pyrophosphate, and 100 ug/mi yeast tRNA at 50 C. Filters
were washed in 6 x SSC-0.05% sodium pyrophosphate at
60 C.

DNA Sequencing and Biot Hybridizations

DNA sequencing of both strands was carried out with the
dideoxy chain termination method (25), using the exonuclease
Il/S1 nuciease strategy (26).

For Northern analysis, RNA was electrophoresed on form-
aldehyde gels (27, 28), transferred to nitrocellulose, and hy-
bridized in 50% formamide, 5 X SSC, 4 X Denhardt’s, 0.1%
sodium dodecyl suifate (SDS), 0.1% sodium pyrophosphate,
and 100 g/ml saimon DNA at 50 C. Filters were washed first
in 2 X SSC, 0.1% SDS, and 0.1% sodium pyrophosphate,
then in 0.1 X SSC-0.1% SDS at 50 C.

For Southern analysis, DNA was electrophoresed on 1%
agarose gels, transferred to nitrocellulose, and hybridized in 1
™ NaCl, 50 mm sodium phosphate (pH 6.5), 2 mm EDTA, 0.5%
SDS, and 10 x Denhardt's at 65 C. The final wash was carried
outin 2 X SSC at 68 C.

In Vitro Translation Experiments

The full-length 1387-bp GDF-1 cDNA or a deletion mutant
lacking the first 251 nucleotides was subcloned into the Blue-
script vector (Stratagene), and sense or antisense RNA was
transcribed in vitro from the T3 or T7 promoters (29, 30) in the
presence of cap analog, as described by Stratagene. In vitro
translations were carried out by incubating 0.5 ug RNA, 17.5
x| rabbit reticulocyte lysate (Promega, Madison, Wi), 20 um
cold amino acid mixture (Promega), and 20 xCi [**S}methionine
(New England Nuclear, Boston, MA) in the presence or ab-
sence of 10 equivalents of dog pancreatic microsomes (Pro-
mega) for 60 min at 30 C. Endoglycosidase digestions were
carried out by diluting the translation reaction 1:30 with 100
mm sodium acetate (pH 5.5), 0.1% SDS, and 17 mU/ml en-
doglycosidase-H (Boehringer-Mannheim, St. Louis, MO). Pro-
tease digestions were carried out by diluting the translation
reaction 1:20 with PBS-1 mg/ml trypsin (Boehringer-Mann-
heim) in the presence or absence of 0.1% Triton X-100. All
digestions were carried out for 3 h at 37 C. Translation
products were analyzed by electrophoresis on 10% SDS-
polyacrylamide gels (31), followed by fluorography with En-
hance (New England Nuclear). L
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