Headlines at Hopkins: news releases from across the 
university Headlines
@Hopkins
News by Topic: news releases organized by subject News by Topic
News by School: news releases organized by the 
university's 9 schools & divisions News by School
Events Open to the Public (campus-wide) Events Open
to the Public
Blue Jay Sports: Hopkins Athletic Center Blue Jay Sports
Search News Site Search the Site

Contacting the News Staff: directory of university 
press officers Contacting
News Staff
Receive News Via Email (listservs) Receive News
Via Email
Resources for Journalists Resources for Journalists

Faculty Experts: searchable resource organized by 
topic Faculty Experts
Faculty and Administrator Photos Faculty and
Administrator
Photos
Faculty with Homepages Faculty with Homepages
Hopkins in the News: news clips about Hopkins Hopkins in
the News

JHUNIVERSE Homepage JHUniverse Homepage
Headlines at Hopkins
News Release

Office of News and Information
Johns Hopkins University
3003 N. Charles Street, Suite 100
Baltimore, Maryland 21218-3843
Phone: (410) 516-7160 / Fax (410) 516-5251

April 8, 1999
FOR IMMEDIATE RELEASE
MEDIA CONTACT:
Phil Sneiderman, prs@jhu.edu


New Microscope Lets Engineer See How
Metal Atoms Arrange Themselves

Findings Could Help Scientists Understand and Develop
New Jet Engine Materials

To build a better jet engine, Johns Hopkins University engineer Kevin Hemker believes you have to start small. Very small.

Hemker is starting with a powerful new microscope that allows him to see how rows of atoms are arranged in metal alloys. Knowing how these atoms arrange themselves, he says, can help predict how well these materials will be able to withstand the high temperatures, centrifugal forces and corrosive gases that exist inside a jet engine. By looking at defects in the geometric patterns formed by atoms, Hemker and his students are collecting information that may someday help scientists use a computer to devise durable new aerospace materials.

"The U.S. Air Force and others in the aviation industry want to be able to predict in a computer how well new metal alloys will behave without having to physically cast these alloys and test them," says Hemker, an associate professor of mechanical engineering in the G.W.C. Whiting School of Engineering. "That's a time-consuming and expensive process. What we're doing is providing the benchmarks that will help them get to the point where they can evaluate these new materials by using computer models."

Kevin Hemker, associate professor of mechanical engineering, seated at the new microscope.
Photo by Keith Weller

To advance this line of research, Hemker is using a $1.3 million high-resolution transmission electron microscope recently installed at Johns Hopkins' Homewood campus. The state-of-the-art instrument, one of a handful in use at universities throughout the United States, uses a field emission gun to send a powerful beam of electrons through a very thin foil. This foil has been ground and polished to a height of less than 100 atoms. The electron beam travels through it, producing pictures of the atomic structure that can be viewed on a phosphorescent screen, captured on film or videotape, or preserved as digital information.

"Not only can we take pictures of what the microstructure looks like, we can do more complicated chemical analyses," says Hemker. "You can take the electrons that come through the specimen and pass them through an imaging filter that analyzes how much energy the electrons lost as they passed through the specimen. Electrons lose different amounts of energy as they run into different types of atoms, so this is one way you can tell what kind of atoms are present in the specimen and where they are located on a near- atomic scale."

In his own research, funded by the Air Force, Hemker is using the high-tech tool to study imperfections in the atomic structure of pure metals and intermetallic alloys . "It's the imperfections and defects in the crystal structure that control the metal's mechanical properties, such as strength and toughness," he says.

Dr. Kevin Hemker assists John Balk, a materials science and engineering doctoral student, in using the new microscope.
Photo by Keith Weller

Johns Hopkins researchers are collaborating with Northwestern University scientists, who are developing computer models to predict how the properties of new materials might change as different metals are mixed into the recipe. By directly observing the arrangement of these atoms, Hemker will help determine whether these computer models are valid. Eventually, such models may be used to design new aerospace materials.

Hemker is one of at least two dozen Johns Hopkins faculty members from many science and engineering departments who are anxious to conduct experiments with the new high-resolution electron microscope. He and David Veblen, a professor in the Department of Earth and Planetary Sciences, in the Krieger School of Arts and Sciences, obtained grants to purchase the microscope and supervised its installation. Primary funding came from the National Science Foundation and the W. M. Keck Foundation.

In addition to Hemker and Veblen, Johns Hopkins researchers in chemistry, physics, environmental engineering, biomedical engineering, chemical engineering and materials science will use the new instrument to study diverse specimens, ranging from water and soil pollutants to mineral crystals, nanostructured materials and amorphous and crystalline alloys.

Dr. Hemker at the microscope.
Photo by Keith Weller

"This will be an invaluable tool for a wide range of research projects throughout the university," Hemker says. "We'll be able to collect structural information and chemical characterizations at the atomic scale. If we want to stay at the cutting edge of science and engineering, we had to have this microscope."

Color slides of Kevin Hemker and the microscope available; Contact Phil Sneiderman

Related Web Sites

Kevin Hemker's Home Page
Johns Hopkins Materials Testing and Characterization Laboratory
Johns Hopkins Department of Mechanical Engineering

Audio-Video Clip

An audio-video clip entitled Thinking Small Produces Big Science can be found at www.jhu.edu/~itv1/whatsnew.htm#ElectronMicroscope
 


Johns Hopkins University news releases can be found on the World Wide Web at http://www.jhu.edu/news_info/news/
   Information on automatic e-mail delivery of science and medical news releases is available at the same address.


Go to Headlines@HopkinsHome Page

[an error occurred while processing this directive]