580.439/639 Homework \#8 Solutions

Problem 1

Part a) Ignoring r_{e} and using the following equations for r_{i}, c_{m}, and I_{i}

$$
\mathrm{r}_{\mathrm{i}}=\frac{\mathrm{R}_{\mathrm{i}}}{\pi \mathrm{a}^{2}} \quad \mathrm{c}_{\mathrm{m}}=\mathrm{C}_{\mathrm{m}} 2 \pi \mathrm{a} \quad \mathrm{I}_{\mathrm{i}}=2 \pi \mathrm{a}_{\mathrm{i}}^{*}
$$

allows Eqn. 1.1 in the problem statement to be rewritten as

$$
\begin{equation*}
\frac{\pi \mathrm{a}^{2}}{\mathrm{R}_{\mathrm{i}}} \frac{\partial^{2} \mathrm{~V}}{\partial \mathrm{x}^{2}}=2 \pi \mathrm{a} \mathrm{C}_{\mathrm{m}} \frac{\partial \mathrm{~V}}{\partial \mathrm{t}}+2 \pi \mathrm{a} \mathrm{I}_{\mathrm{i}}^{*} \tag{1.3}
\end{equation*}
$$

where $\mathrm{I}_{\mathrm{i}}^{*}$ is the current density in the membrane (current/area) as opposed to I_{i} which is the current per unit length of membrane cylinder and a is the membrane cylinder radius. Dividing Eqn. 1.3 by 2π a gives an equation in which the axon radius a appears only in one term:

$$
\begin{equation*}
\frac{\mathrm{a}}{2 \mathrm{R}_{\mathrm{i}}} \frac{\partial^{2} \mathrm{~V}}{\partial \mathrm{x}^{2}}=\mathrm{C}_{\mathrm{m}} \frac{\partial \mathrm{~V}}{\partial \mathrm{t}}+\mathrm{I}_{\mathrm{i}}^{*} \tag{1.4}
\end{equation*}
$$

Part b) If $\mathrm{V}(\mathrm{x}, \mathrm{t})$ is a propagating constant-waveshape pulse of the form $\mathrm{F}(\mathrm{x}-\Theta \mathrm{t})$ then the derivatives can be written as follows

$$
\frac{\partial V}{\partial x}=\frac{\partial F(x-\Theta t)}{\partial x}=\frac{d F}{d u} \frac{\partial u}{\partial x}=\frac{d F}{d u}
$$

where $u=x-\Theta t$. Similarly

$$
\begin{equation*}
\frac{\partial^{2} \mathrm{~V}}{\partial \mathrm{x}^{2}}=\frac{\mathrm{d}^{2} \mathrm{~F}}{\mathrm{du}^{2}} \tag{1.5}
\end{equation*}
$$

and by the same argument

$$
\begin{equation*}
\frac{\partial \mathrm{V}}{\partial \mathrm{t}}=\frac{\partial \mathrm{F}(\mathrm{x}-\Theta \mathrm{t})}{\partial \mathrm{t}}=\frac{\mathrm{dF}}{\mathrm{du}} \frac{\partial \mathrm{u}}{\partial \mathrm{t}}=-\Theta \frac{\mathrm{dF}}{\mathrm{du}} \tag{1.6}
\end{equation*}
$$

Now substitution of Eqns 1.5 and 1.6 into 1.4 gives the following ordinary differential equation for the waveshape F :

$$
\frac{\mathrm{a}}{2 \mathrm{R}_{\mathrm{i}}} \frac{\mathrm{~d}^{2} \mathrm{~F}}{\mathrm{du}}=-\mathrm{C}_{\mathrm{m}} \Theta \frac{\mathrm{dF}}{\mathrm{du}}+\mathrm{I}_{\mathrm{i}}^{*}
$$

Part c) The equation for HH variable $\mathrm{n}(\mathrm{V}, \mathrm{t}, \mathrm{x})$ is written below. Notice that x has been added as an independent variable here because n will vary with position down the
axon. However, the x-dependence of this equation is via $V(x, t)$, and no additional complexity is added to the equation for $\mathrm{dn} / \mathrm{dt}$:

$$
\frac{\partial \mathrm{n}(\mathrm{x}, \mathrm{t})}{\partial \mathrm{t}}=\frac{\mathrm{n}_{\infty}(\mathrm{V}(\mathrm{x}, \mathrm{t}))-\mathrm{n}(\mathrm{x}, \mathrm{t})}{\tau_{\mathrm{n}}(\mathrm{~V}(\mathrm{x}, \mathrm{t}))}
$$

Now substituting $\mathrm{F}(\mathrm{u})$ for V and $\mathrm{n}(\mathrm{u})$ for $\mathrm{n}(\mathrm{x}, \mathrm{t})$ in the equation above and using the chain rule (Eqn 1.6) again gives

$$
\frac{\mathrm{dn}(\mathrm{u})}{\mathrm{du}}=-\frac{1}{\Theta} \frac{\mathrm{n}_{\infty}(\mathrm{F})-\mathrm{n}}{\tau_{\mathrm{n}}(\mathrm{~F})}
$$

The other two equations, for $\partial \mathrm{m} / \partial \mathrm{t}$ and $\partial \mathrm{h} / \partial \mathrm{t}$, can be treated similarly.
Part d) The first part of this problem can be derived by differentiating Eqn. 1.6 to give

$$
\begin{equation*}
\frac{\partial^{2} \mathrm{~V}}{\partial \mathrm{t}^{2}}=\Theta^{2} \frac{\mathrm{~d}^{2} \mathrm{~F}}{d \mathrm{u}^{2}} \tag{1.7}
\end{equation*}
$$

Comparing Eqns. 1.5 and 1.7 gives the following relationship between $\partial^{2} \mathrm{~V} / \partial \mathrm{x}^{2}$ and $\partial^{2} \mathrm{~V} / \partial \mathrm{t}^{2}$ for the special case of V a propagating wave.

$$
\frac{\partial^{2} V}{\partial t^{2}}=\Theta^{2} \frac{\partial^{2} V}{\partial x^{2}}
$$

So that Eqn. 1.4 can be expressed in terms of time derivatives of V as an ordinary differential equation describing the dynamics of V at a fixed point x

$$
\frac{a}{2 \mathrm{R}_{\mathrm{i}} \Theta^{2}} \frac{\mathrm{~d}^{2} \mathrm{~V}}{\mathrm{dt}^{2}}=\mathrm{C}_{\mathrm{m}} \frac{\mathrm{dV}}{\mathrm{dt}}+\mathrm{I}_{\mathrm{i}}^{*}
$$

Then $K=a / 2 R_{i} \Theta^{2}$. Note that this equation applies to all axons with the same R_{i}, C_{m}, and complement of channels ($\mathrm{I}_{\mathrm{i}}{ }^{*}$), regardless of radius.

Part e) If K is a constant, then propagation velocity Θ is given by

$$
\Theta=\sqrt{\frac{\mathrm{a}}{2 \mathrm{R}_{\mathrm{i}} \mathrm{~K}}}
$$

Problem 2

The resistance of a thin shell of inner radius r and outer radius $r+d r$ for current flow in the radial direction is given by

$$
\mathrm{dR}=\frac{\mathrm{R}_{\mathrm{my}} \mathrm{dr}}{2 \pi \mathrm{r}}
$$

where R_{my} is the bulk resistivity of the material and it is assumed that the shell has unit length. Adding up all the shells between radius $\mathrm{d} / 2$ and $\mathrm{D} / 2$ gives

$$
\mathrm{r}_{\mathrm{m}}=\int_{0}^{\mathrm{r}_{\mathrm{m}}} \mathrm{dR}=\int_{\mathrm{d} / 2}^{\mathrm{D} / 2} \frac{\mathrm{R}_{\mathrm{my}}}{2 \pi \mathrm{r}} \mathrm{dr}=\frac{\mathrm{R}_{\mathrm{my}}}{2 \pi} \ln \frac{\mathrm{D}}{\mathrm{~d}}
$$

Part b) The length constant λ is given by

$$
\lambda=\sqrt{\frac{r_{m}}{r_{i}}}=\sqrt{\frac{R_{m y}}{2 \pi} \ln \frac{D}{d} / \frac{R_{i}}{\pi(d / 2)^{2}}}=\sqrt{\frac{R_{m y}}{8 R_{i}}} d \sqrt{\ln \frac{D}{d}}
$$

If the outer diameter of the myelin is fixed at D , and the inner diameter d is allowed to vary, the maximum value of λ can be found by differentiating w.r.t. d and setting the derivative equal to 0 .

$$
\frac{d \lambda}{d d}=\sqrt{\frac{R_{m y}}{8 R_{i}}}\left[\sqrt{\ln \frac{D}{d}}-1 / 2 \sqrt{\ln \frac{D}{d}}\right]=0
$$

which gives

$$
\ln \frac{D}{d}=\frac{1}{2} \quad \Rightarrow \quad d=0.61 D
$$

That this is a maximum can be verified by considering the second derivative.
Part c) The time constant τ_{m} is given by

$$
\tau_{m}=r_{m} c_{m}=\frac{R_{m y}}{2 \pi} \ln \frac{D}{d} \frac{2 \pi \kappa \varepsilon_{0}}{\ln \frac{D}{d}}=\text { (const) }
$$

That is, the membrane time constant is constant, regardless of axon diameter. As a result the ratio $\lambda / \tau_{\mathrm{m}}$ is proportional to λ and has the same diameter dependence as λ. Thus if λ is maximized by $\mathrm{d}=0.61 \mathrm{D}$, then $\lambda / \tau_{\mathrm{m}}$ is also maximized by $\mathrm{d}=0.61 \mathrm{D}$.

Problem 3

Part a) From the usual equations,

$$
\begin{gathered}
\tau=R_{m} C_{m}=1.2 \times 10^{4} \Omega-\mathrm{cm}^{2} \cdot 1.2 \times 10^{-6} \mathrm{fd} / \mathrm{cm}^{2}=0.0144 \mathrm{~s}=14.4 \mathrm{~ms} \\
\lambda=\sqrt{\frac{\mathrm{R}_{\mathrm{m}} \mathrm{a}}{2 \mathrm{R}_{\mathrm{i}}}}=\sqrt{\frac{1.2 \times 10^{4} \Omega-\mathrm{cm}^{2} \cdot 0.5 \times 10^{-4} \mathrm{~cm}}{2 \cdot 150 \Omega-\mathrm{cm}}}=447 \mu
\end{gathered}
$$

the electrotonic length is then

$$
\mathrm{L}=\frac{1}{\lambda}=\frac{10 \mu}{447 \mu}=0.022
$$

Part b) The cable equation is, as usual

$$
\frac{\partial^{2} \mathrm{~V}}{\partial \chi^{2}}=\frac{\partial \mathrm{V}}{\partial \mathrm{~T}}+\mathrm{V}
$$

In the sinusoidal steady state, initial conditions are not needed and the cable equation becomes

$$
\begin{equation*}
\frac{\partial^{2} \overline{\mathrm{~V}}}{\partial \chi^{2}}=(1+j \omega) \overline{\mathrm{V}} \tag{3.1}
\end{equation*}
$$

where $\overline{\mathrm{V}}$ is the Fourier transform of V and $\mathrm{j} \omega \overline{\mathrm{V}}$ is the Fourier transform of $\partial \mathrm{V} / \partial \mathrm{T}$. Recall that ω is related to frequency in $\mathrm{Hz}(\Omega)$ as $\omega=\Omega / \tau_{\mathrm{m}}$, where τ_{m} is the membrane time constant.

The boundary conditions suggested by the problem statement are, after Fourier transformation

$$
\overline{\mathrm{V}}(0, j \omega)=0 \quad \text { and }\left.\quad \mathrm{G}_{\infty} \frac{\partial \overline{\mathrm{V}}}{\partial \chi}\right|_{\chi=\mathrm{L}}=\overline{\mathrm{I}}_{\mathrm{L}}(\mathrm{j} \omega)
$$

Note that $\chi=0$ is the soma end of the cilium and $\chi=\mathrm{L}$ is the transducer-channel end of the cilium. There is no negative sign in the $\chi=\mathrm{L}$ equation because of the reverse direction of current definition in the problem statement.

Part c) The solution to the cable equation (Eqn. 3.1) is

$$
\overline{\mathrm{V}}(\chi, \mathrm{j} \omega)=\mathrm{A} \mathrm{e}^{\chi \sqrt{\mathrm{j} \omega+1}}+\mathrm{Be}^{-\chi \sqrt{j \omega+1}}
$$

At $\chi=0$,

$$
\bar{V}(0, j \omega)=0 \quad \Rightarrow \quad A+B=0 \quad \Rightarrow \quad A=-B
$$

so that $\overline{\mathrm{V}}(\chi, j \omega)=A \sinh [\chi \sqrt{j \omega+1}]$. At $\chi=\mathrm{L}$,

$$
\left.\mathrm{G}_{\infty} \frac{\partial \overline{\mathrm{V}}}{\partial \chi}\right|_{\chi=\mathrm{L}}=\mathrm{G}_{\infty} \mathrm{A} \sqrt{\mathrm{j} \omega+1} \cosh [\mathrm{~L} \sqrt{\mathrm{j} \omega+1}]=\overline{\mathrm{I}}_{\mathrm{L}}(\mathrm{j} \omega)
$$

Thus

$$
A=\frac{\overline{\mathrm{I}}_{\mathrm{L}}(\mathrm{j} \omega)}{\mathrm{G}_{\infty} \sqrt{\mathrm{j} \omega+1} \cosh [\mathrm{~L} \sqrt{\mathrm{j} \omega+1}]}
$$

and the voltage in the cilium is given by

$$
\overline{\mathrm{V}}(\chi, j \omega)=\frac{\overline{\mathrm{I}}_{\mathrm{L}}(\mathrm{j} \omega)}{\mathrm{G}_{\infty} \sqrt{j \omega+1}} \frac{\sinh [\chi \sqrt{j \omega+1}]}{\cosh [\mathrm{L} \sqrt{\mathrm{j} \omega+1}]}
$$

The axial current in the cilium is given by (where the direction of the current arrow is reversed, as in the problem statement)

$$
\overline{\mathrm{I}}_{\mathrm{i}}(\chi, \mathrm{j} \omega)=\mathrm{G}_{\infty} \frac{\partial \overline{\mathrm{V}}}{\partial \chi}=\overline{\mathrm{I}}_{\mathrm{L}}(\mathrm{j} \omega) \frac{\cosh [\chi \sqrt{\mathrm{j} \omega+1}]}{\cosh [\mathrm{L} \sqrt{\mathrm{j} \omega+1}]}
$$

and at $\chi=0$, the somatic end of the cilium

$$
\begin{equation*}
\bar{I}_{0}(j \omega)=\bar{I}_{i}(0, j \omega)=\frac{\bar{I}_{L}(j \omega)}{\cosh [L \sqrt{j \omega+1}]} \tag{3.2}
\end{equation*}
$$

Note that Eqn. 3.2 can be derived easily by starting with the transformed two-port model of the finite cable derived in class:

$$
\left[\begin{array}{c}
\overline{\mathrm{V}}_{0} \tag{3.3}\\
-\overline{\mathrm{I}}_{0}
\end{array}\right]=\left[\begin{array}{cc}
\cosh (\mathrm{qL}) & \sinh (\mathrm{qL}) / \mathrm{G}_{\infty} \mathrm{q} \\
\mathrm{G}_{\infty} \mathrm{q} \sinh (\mathrm{qL}) & \cosh (\mathrm{qL})
\end{array}\right]\left[\begin{array}{c}
\overline{\mathrm{V}}_{\mathrm{L}} \\
-\overline{\mathrm{I}}_{\mathrm{L}}
\end{array}\right]
$$

where the transform variable $q=\sqrt{j \omega+1}$ and the voltage and current variables have been Fourier transformed. The negative signs on the currents $\overline{\mathrm{I}}_{0}$ and $\overline{\mathrm{I}}_{\mathrm{L}}$ are necessary because of the convention used for current directions in this problem. From the boundary conditions, $\overline{\mathrm{V}}_{0}=0$, so the first equation in Eqn. 3.3 is

$$
\begin{equation*}
0=\overline{\mathrm{V}}_{\mathrm{L}} \cosh (\mathrm{qL})-\frac{\overline{\mathrm{I}}_{\mathrm{L}}}{\mathrm{G}_{\propto} \mathrm{q}} \sinh (\mathrm{qL}) \tag{3.4}
\end{equation*}
$$

The second equation in Eqn. 3.3 expresses the relationship between $\overline{\mathrm{I}}_{0}$ and $\overline{\mathrm{I}}_{\mathrm{L}}$, in term of $\overline{\mathrm{V}}_{\mathrm{L}}$. Using Eqn. 3.4 to eliminate $\overline{\mathrm{V}}_{\mathrm{L}}$ gives

$$
\begin{aligned}
-\overline{\mathrm{I}}_{0} & =\mathrm{G}_{\propto} \mathrm{q} \sinh (\mathrm{qL}) \overline{\mathrm{V}}_{\mathrm{L}}-\cosh (\mathrm{qL}) \overline{\mathrm{I}}_{\mathrm{L}} \\
\overline{\mathrm{I}}_{0}= & -\mathrm{G}_{\propto} \mathrm{q} \sinh (\mathrm{qL}) \frac{\sinh (\mathrm{qL}) \overline{\mathrm{I}}_{\mathrm{L}}}{\mathrm{G}_{\propto \mathrm{q}} \mathrm{q} \cosh (\mathrm{qL})}+\cosh (\mathrm{qL}) \overline{\mathrm{I}}_{\mathrm{L}} \\
& =\frac{-\sinh ^{2}(\mathrm{qL})+\cosh ^{2}(\mathrm{qL})}{\cosh (\mathrm{qL})} \overline{\mathrm{I}}_{\mathrm{L}} \\
& =\frac{1}{\cosh (\mathrm{qL})} \overline{\mathrm{I}}_{\mathrm{L}}
\end{aligned}
$$

which is the same result as Eqn. 3.2. Use has been made of the identity

$$
\cosh ^{2}(\mathrm{qL})-\sinh ^{2}(\mathrm{qL})=1
$$

At D.C. $(\omega=0 \mathrm{~Hz})$, the transfer current gain is essentially 1 ,

$$
\frac{1}{\cosh [0.022 \sqrt{\mathrm{j} 0+1}]}=\frac{1}{\cosh [0.022)]}=0.9998
$$

The gain at 1 kHz is given by

$$
\begin{aligned}
\left.\frac{1}{\cosh [\mathrm{~L} \sqrt{\mathrm{j} \omega+1}]}\right|_{\omega / \tau_{\mathrm{m}}=2 \pi \cdot 10^{3}} & =\frac{1}{\cosh \left[0.022 \sqrt{\mathrm{j} 2 \pi \times 10^{3} 0.0144+1}\right]} \\
& =\frac{1}{\cosh [0.022 \sqrt{\mathrm{j} 90.48+1}]} \\
& =\frac{1}{\cosh \left[0.022 \sqrt{\left.90.48 \mathrm{e}^{\mathrm{j} 0.4965 \pi}\right]}\right.}
\end{aligned}
$$

choosing only the first-quadrant root gives (the third quadrant root gives the same final answer)

$$
\begin{aligned}
& =\frac{1}{\cosh \left[0.022 \cdot 9.512 \mathrm{e}^{\mathrm{j} 0.2482 \pi}\right]} \\
& =\frac{1}{\cosh [0.15+\mathrm{j} 0.15]}
\end{aligned}
$$

Using the fact that $\cosh [a+j b]=\cosh (a) \cos (b)+j \sinh (a) \sin (b)$,

$$
=\frac{1}{1.00+\mathrm{j} 0.023}=1.00-\mathrm{j} 0.023=1 \cdot \mathrm{e}^{-\mathrm{j} 0.0073 \pi}
$$

so that the electrotonic properties of the cilium produce essentially no attenuation or phase shift of the current I_{L} at 1 KHz .

The gain is 0.5 at 95 kHz (this is a good problem for Mathematica).

