
580.439/639  Homework #8 Solutions 

Problem 1 

Part a)  Ignoring re and using the following equations for ri, cm, and Ii  

 
ri = Ri

πa2
          cm = Cm2πa          Ii = 2πaIi

*
 

allows Eqn. 1.1 in the problem statement to be rewritten as 

 
πa2

Ri
 ∂

2V
∂x2

 = 2πa Cm ∂V∂t  + 2πa Ii
*

 
(1.3)

 

where I
*
i   is the current density in the membrane (current/area) as opposed to Ii which is 

the current per unit length of membrane cylinder and a is the membrane cylinder radius.  
Dividing Eqn. 1.3 by 2πa gives an equation in which the axon radius a appears only in 
one term: 

 
a

2Ri
 ∂

2V
∂x2

 = Cm ∂V∂t  + Ii
*

 
(1.4)

 

Part b)  If V(x,t) is a propagating constant-waveshape pulse of the form F(x-Θt) 
then the derivatives can be written as follows 

 
∂V
∂x

 = ∂F(x-Θt)
∂x

 = dF
du

 ∂u
∂x

 = dF
du  

where u = x-Θt.  Similarly 

 
∂2V
∂x2

 = d
2F

du2  (1.5) 

and by the same argument 

 
∂V
∂t  = ∂F(x-Θt)

∂t  = dF
du

 ∂u
∂t  = -Θ dF

du  (1.6) 

Now substitution of Eqns 1.5 and 1.6 into 1.4 gives the following ordinary differential 
equation for the waveshape F: 

 a
2Ri

 d2F
du2

 = -CmΘ dF
du + Ii

* 

Part c)  The equation for HH variable n(V,t,x) is written below.  Notice that x has 
been added as an independent variable here because n will vary with position down the 
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axon.  However, the x-dependence of this equation is via V(x,t), and no additional 
complexity is added to the equation for dn/dt: 

 ∂n(x,t)
∂t

 = 
n∞(V(x,t)) - n(x,t)

τn(V(x,t))
 

Now substituting F(u) for V and n(u) for n(x,t) in the equation above and using the chain 
rule (Eqn 1.6) again gives 

 dn(u)
du  = - 1

Θ
 n∞(F) - n
τn(F)

 

The other two equations, for ∂m/∂t and ∂h/∂t, can be treated similarly. 

Part d)  The first part of this problem can be derived by differentiating Eqn. 1.6 
to give 

 

∂2V
∂t2

 = Θ2 d2F
du2  

(1.7)
 

Comparing Eqns. 1.5 and 1.7 gives the following relationship between ∂2V/∂x2 and 
∂2V/∂t2 for the special case of V a propagating wave. 

 

∂2V
∂t2

 = Θ2 ∂
2V
∂x2  

So that Eqn. 1.4 can be expressed in terms of time derivatives of V as an ordinary 
differential equation describing the dynamics of V at a fixed point x 

 a
2RiΘ

2
 d2V
dt2

 = Cm dV
dt  + Ii

* 

Then K = a/2RiΘ2.  Note that this equation applies to all axons with the same Ri, Cm, and 
complement of channels (Ii*), regardless of radius. 

Part e)  If K is a constant, then propagation velocity Θ is given by 

 
Θ = a

2Ri K  

Problem 2 

The resistance of a thin shell of inner radius r and outer radius r+dr for current 
flow in the radial direction is given by 

 dR = Rmy dr
2πr  
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where Rmy is the bulk resistivity of the material and it is assumed that the shell has unit 
length.  Adding up all the shells between radius d/2 and D/2 gives 

 
rm = dR

0

rm

 = Rmy
2πr  dr

d/2

D/2

 = Rmy
2π  lnD

d
 

Part b)  The length constant λ is given by 

 λ =
rm
ri

=
Rmy
2π

ln D
d

Ri
π (d / 2)2

=
Rmy
8Ri

d ln D
d

 

If the outer diameter of the myelin is fixed at D, and the inner diameter d is allowed to 
vary, the maximum value of λ can be found by differentiating w.r.t. d and setting the 
derivative equal to 0. 

 dλ
dd

=
Rmy
8Ri

ln D
d

−1 2 ln D
d

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = 0  

which gives 

 ln D
d

=
1
2

     ⇒      d = 0.61D  

That this is a maximum can be verified by considering the second derivative. 

Part c)  The time constant τm is given by 

 τm = rmcm =
Rmy
2π
ln
D
d
2πκε0
ln D
d

= (const)  

That is, the membrane time constant is constant, regardless of axon diameter.  As a result 
the ratio λ/τm is proportional to λ and has the same diameter dependence as λ.  Thus if λ 
is maximized by d=0.61D, then λ/τm is also maximized by d=0.61D. 

Problem 3 

Part a)  From the usual equations, 

 

� 

τ = RmCm = 1.2 x104 Ω− cm2 ⋅1.2 x 10−6  fd/cm2 = 0.0144 s =  14.4 ms 

 
λ = Rm a

2 Ri
 = 1.2 x 104 Ω-cm2 ⋅ 0.5 x 10-4 cm

2 ⋅ 150 Ω-cm
 = 447 µ
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the electrotonic length is then 

 
L = l

λ
 = 10 µ

447 µ
 = 0.022

 

Part b)  The cable equation is, as usual 

 
∂2V
∂χ2

 = ∂V
∂T

 + V
 

In the sinusoidal steady state, initial conditions are not needed and the cable equation 
becomes 

 
∂2V
∂χ2

 = (1 + jω) V
 (3.1) 

where V
_

   is the Fourier transform of V and jωV
_

   is the Fourier transform of ∂V/∂T.  
Recall that ω is related to frequency in Hz (Ω) as ω = Ω/τm, where τm is the membrane 
time constant. 

The boundary conditions suggested by the problem statement are, after Fourier 
transformation 

 
V(0,jω) = 0     and     G∞ ∂V

∂χ χ=L
 = IL(jω)

 

Note that χ=0 is the soma end of the cilium and χ=L is the transducer-channel end of the 
cilium.  There is no negative sign in the χ=L equation because of the reverse direction of 
current definition in the problem statement. 

Part c)  The solution to the cable equation (Eqn. 3.1) is 

 V(χ,jω) = A eχ jω+1 + Be-χ jω+1 

At χ=0, 

 V(0, jω) = 0     ⇒     A + B = 0      ⇒     A = -B  

so that V(χ,jω) = A sinh χ jω+1 .  At χ = L, 

 
G∞ ∂V

∂χ χ=L
 = G∞ A jω+1 cosh L jω+1  = IL(jω)

 

Thus 
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A  = IL(jω)

G∞ jω+1 cosh L jω+1  

and the voltage in the cilium is given by 

 
V(χ, jω) = IL(jω)

G∞ jω+1
 sinh χ jω+1
cosh L jω+1  

The axial current in the cilium is given by (where the direction of the current arrow is 
reversed, as in the problem statement) 

 
Ii(χ, jω) = G∞ ∂V

∂χ
 = IL(jω) cosh χ jω+1

cosh L jω+1  

and at χ = 0, the somatic end of the cilium 

 I 0 ( jω) = I i(0, jω) = I L( jω)
cosh L jω +1[ ]  (3.2) 

Note that Eqn. 3.2 can be derived easily by starting with the transformed two-port 
model of the finite cable derived in class: 

 
V0

-I0
 = cosh(qL) sinh(qL)/G∞q

G∞q sinh(qL) cosh(qL)  
VL

-IL
 (3.3) 

where the transform variable q = jω+1 and the voltage and current variables have been 
Fourier transformed.  The negative signs on the currents I0 and IL are necessary because 
of the convention used for current directions in this problem.  From the boundary 
conditions, V0 = 0, so the first equation in Eqn. 3.3 is 

 0 = VL cosh(qL) - IL
G∞q

 sinh(qL) (3.4) 

The second equation in Eqn. 3.3 expresses the relationship between I0 and IL, in term of 
VL.  Using Eqn. 3.4 to eliminate VL gives 
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-I0 = G∞q sinh(qL) VL - cosh(qL) IL

I0 = -G∞q sinh(qL) sinh(qL) IL
G∞q cosh(qL)

 + cosh(qL) IL

       = - sinh2(qL) + cosh2(qL)
cosh(qL)

 IL

       = 1
cosh(qL)

 IL

 

which is the same result as Eqn. 3.2.  Use has been made of the identity 

 cosh2(qL) - sinh2(qL) = 1 

At D.C. (ω= 0 Hz), the transfer current gain is essentially 1, 

 1
cosh 0.022 j0 + 1

 = 1
cosh 0.022)

 = 0.9998  

The gain at 1 kHz is given by 

 

1
cosh L jω+1 ω /τm=2π ⋅103

 = 1
cosh 0.022 j2π x 103 0.0144 +1  

                         
= 1

cosh 0.022 j90.48 +1  

                                 
= 1

cosh 0.022 90.48 ej 0.4965π  

choosing only the first-quadrant root gives (the third quadrant root gives the same final 
answer) 

                                 
= 1

cosh 0.022 ⋅ 9.512 ej 0.2482π  

                     
= 1

cosh 0.15 + j 0.15  

Using the fact that cosh[a+jb] = cosh(a) cos(b) + j sinh(a) sin(b), 

 
= 1

1.00 + j 0.023
 = 1.00 - j 0.023 = 1 ⋅ e- j 0.0073π

 

so that the electrotonic properties of the cilium produce essentially no attenuation or 
phase shift of the current IL at 1 KHz. 

The gain is 0.5 at 95 kHz (this is a good problem for Mathematica). 


