580.439/639 Homework #8 Solutions
Problem 1
Part a) Ignoring r. and using the following equations for rj, ¢y, and Ij

R;

5 cm = Cp2ma I = 2na1;<
a

I =

allows Eqn. 1.1 in the problem statement to be rewritten as
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where I; is the current density in the membrane (current/area) as opposed to I; which is
the current per unit length of membrane cylinder and a is the membrane cylinder radius.
Dividing Eqn. 1.3 by 2ma gives an equation in which the axon radius a appears only in
one term:
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Part b) If V(x,t) is a propagating constant-waveshape pulse of the form F(x-Ot)
then the derivatives can be written as follows

9V _IE(x-BY) _ dF du _ dF
ox 0x T duodx du

where u = x-Ot. Similarly

PV _&F
dx2  du? (1.5)

and by the same argument

9V _0F(x-00) _dF du _ o dF
ot  duodt  du (1.6)

Now substitution of Eqns 1.5 and 1.6 into 1.4 gives the following ordinary differential
equation for the waveshape F:

_a d’F __ dF _
2Ri du? Cm@ du Tl

Part ¢) The equation for HH variable n(V ,t,x) is written below. Notice that x has
been added as an independent variable here because n will vary with position down the
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axon. However, the x-dependence of this equation is via V(x,t), and no additional
complexity is added to the equation for dn/dt:

on(x,t) _ n(V(X,t) - n(x.t)
o (VX))

Now substituting F(u) for V and n(u) for n(x,t) in the equation above and using the chain
rule (Eqn 1.6) again gives

dn(u) _ 1 n(F) - n
du  © 1,(F)

The other two equations, for dm/dt and oh/dt, can be treated similarly.

Part d) The first part of this problem can be derived by differentiating Eqn. 1.6
to give

2
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Comparing Eqns. 1.5 and 1.7 gives the following relationship between 02V/dx? and
92V/0t2 for the special case of V a propagating wave.
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So that Eqn. 1.4 can be expressed in terms of time derivatives of V as an ordinary
differential equation describing the dynamics of V at a fixed point x

C dZV:Cmﬂ+I~*

R0 d d

Then K = a/2R;02. Note that this equation applies to all axons with the same R;, Cp,, and
complement of channels (I;*), regardless of radius.

Part e) If K is a constant, then propagation velocity © is given by

— a
2R,K

Problem 2

The resistance of a thin shell of inner radius r and outer radius r+dr for current
flow in the radial direction is given by
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where Rpy is the bulk resistivity of the material and it is assumed that the shell has unit
length. Adding up all the shells between radius d/2 and D/2 gives

I'm D/2 R R
_ _ my q._omy ..D
rm—j dR—l1 ot dr o lnd
0
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Part b) The length constant A is given by

R .
A= == ﬂlng/ X, 7 = Koy d‘/lnB
T 2r df n(d/?2) 8R, d

If the outer diameter of the myelin is fixed at D, and the inner diameter d is allowed to
vary, the maximum value of A can be found by differentiating w.r.t. d and setting the

derivative equal to 0.
R , ’
@: _m 1112—1/2 11'12 =0
dd 8R, d d

lnle = d=0.61D
d 2

which gives

That this is a maximum can be verified by considering the second derivative.

Part ¢) The time constant Ty, is given by

R, D 27mk

T, =r.c, =—In— & 7~ = (const)
2r  d In =
d

That is, the membrane time constant is constant, regardless of axon diameter. As a result
the ratio A/t is proportional to A and has the same diameter dependence as A. Thus if A
is maximized by d=0.61D, then A/ty, is also maximized by d=0.61D.

Problem 3
Part a) From the usual equations,

7=R,C,=12x10" Q—cm’-12x10° fd/cm’=0.0144 s = 144 ms

4 0. 2. -4
- ﬁRma:v1.2x10 Q-em? 05x 10 em _ 0
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the electrotonic length is then

L=1=-100 _go2
A 447
Part b) The cable equation is, as usual
2
IV = N +V
ay2 dT

In the sinusoidal steady state, initial conditions are not needed and the cable equation
becomes

1 -
IV =(1+jo)V
ax2 (3.1)

where V is the Fourier transform of V and jm(f is the Fourier transform of dV/dT.
Recall that w is related to frequency in Hz (QQ) as w = Q/ty,, where Ty, is the membrane
time constant.

The boundary conditions suggested by the problem statement are, after Fourier
transformation

VO0jo)=0 and Go ﬂi =1 (jo)
I Iy=L

Note that x=0 is the soma end of the cilium and =L is the transducer-channel end of the
cilium. There is no negative sign in the x=L equation because of the reverse direction of
current definition in the problem statement.

Part ¢) The solution to the cable equation (Eqn. 3.1) is
V(o) = Aetlior! 4 Bexljort
At x=0,
V0,j0)=0 = A+B=0 = A=-B
so that V(xj ) = Asinh yVjo+1. Aty =L,

G (3\] = Go A Vjo+1 cosh LVjo+1 = I (jm)
Xlx=L

Thus
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A = iL(](O)
Go Vjoo+ 1 cosh/ LVjo+1]

and the voltage in the cilium is given by

I(jo) sinhy Vjo+1]
Go Vjo+1 cosh|LVjo+1]

V(x.jo) =

The axial current in the cilium is given by (where the direction of the current arrow is
reversed, as in the problem statement)

L(x.jo) = G- ZZ _ Ty (joo) SO o+ 1]

cosh[L jo+ 1}
and at x = 0, the somatic end of the cilium

I,(jo)

cosh[L‘/ja) + 1]

Note that Eqn. 3.2 can be derived easily by starting with the transformed two-port
model of the finite cable derived in class:

I,(jo) =10, jo) = (3.2)

\i

'IL

Vo

cosh(qL)  sinh(qL)/Geq }

Gwqsinh(ql)  cosh(gL) (3.3)

‘I()

where the transform variable q = Vjw+1 and the voltage and current variables have been
Fourier transformed. The negative signs on the currents Iy and I} are necessary because
of the convention used for current directions in this problem. From the boundary
conditions, V = 0, so the first equation in Eqn. 3.3 is

0 = Vi, cosh(qL) - GILq sinh(qL) (3.4)

The second equation in Eqn. 3.3 expresses the relationship between Ip and I, in term of
V1. Using Eqn. 3.4 to eliminate Vi gives
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-Ip = Geq sinh(gL) Vi, - cosh(qL) I.

sinh(qL) I,

Ip = -Gq sinh(qL) "~
0 q sinh(q )Gooq cosh(qL)

+ cosh(qL) I,

- sinh2(qL) + cosh2(qL) I
B cosh(qL) L

1
cosh(qL) L

which is the same result as Eqn. 3.2. Use has been made of the identity
cosh?(qL) - sinh?(qL) = 1
At D.C. (o= 0 Hz), the transfer current gain is essentially 1,

1 =1 _09998
cosh[0.022 VjO + 1] cosh[0.022)]

The gain at 1 kHz is given by

1 _ 1
cosh LVjort Ulo/y=2m-10>  cosh 0,022 Vj2r x 10° 0.0144 +1]

_ 1
cosh[0.022 1j90.48 +1|

_ 1
cosh 0.022 190.48 ¢i0.4965t]

choosing only the first-quadrant root gives (the third quadrant root gives the same final

answer)
- 1
cosh[0.022 - 9.512 ¢j0-2482|

_ 1
cosh[0.15 +j 0.15]

Using the fact that cosh[a+jb] = cosh(a) cos(b) + j sinh(a) sin(b),

= %= 1.00 —j 0023 =1 - e'j0.0073n
1.00 +0.023

so that the electrotonic properties of the cilium produce essentially no attenuation or
phase shift of the current Iy, at 1 KHz.

The gain is 0.5 at 95 kHz (this is a good problem for Mathematica).



