580.439/639 Homework 7 Solutions

Problem 1

Part a) For the cylinder model:

$$
q=\sqrt{1+s \tau_{m}} \quad L=\frac{\Delta x}{\lambda}=\frac{\Delta x}{\sqrt{\frac{a}{2 G_{m} R_{i}}}} \quad G_{\infty}=\frac{1}{r_{i} \lambda}=\pi a^{3 / 2} \sqrt{\frac{2 G_{m}}{R_{i}}}
$$

where s is the Laplace transform variable in units of Hz . In class, s was dimensionless, because the transform was done in terms of $T=t / \tau_{m}$ as the time variable. If t had been used, then the result would have been as above. Using t instead of T is appropriate here, because t will be used for the compartmental model. For that model:

$$
r_{i j}=\frac{R_{i} \Delta x}{\pi a^{2}} \quad g_{m j}=G_{m} 2 \pi a \Delta x \quad c_{m j}=C_{m} 2 \pi a \Delta x
$$

Part b) In class, it was shown that the cylinder model gives the following:

$$
\begin{aligned}
& {\left[\begin{array}{l}
V_{0} \\
I_{0}
\end{array}\right]=\left[\begin{array}{cc}
\cosh (q L) & \sinh (q L) / G_{\infty} q \\
G_{\infty} q \sinh (q L) & \cosh (q L)
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=} \\
& \qquad=\left[\begin{array}{cc}
\cosh \left(\sqrt{1+s \tau_{m}} L\right) & \left.\sinh \left(\sqrt{1+s \tau_{m}} L\right) / G_{\infty} \sqrt{1+s \tau_{m}}\right]\left[\begin{array}{l}
V_{1} \\
G_{\infty} \sqrt{1+s \tau_{m}} \sinh \left(\sqrt{1+s \tau_{m}} L\right)
\end{array}\right] \cosh \left(\sqrt{1+s \tau_{m}} L\right)
\end{array}\right]\left[I_{1}\right]
\end{aligned}
$$

For the compartmental model, mesh equations can be written as follows:

$$
\begin{aligned}
& V_{0}=I_{0} \frac{r_{i j}}{2}+\left(I_{0}-I_{1}\right) z_{m j} \\
& V_{1}=\left(I_{0}-I_{1}\right) z_{m j}-I_{1} \frac{r_{i j}}{2}
\end{aligned}
$$

where $z_{m j}$ is the parallel combination of $g_{m j}$ and $c_{m j}: z_{m j}=1 /\left(g_{m j}+s c_{m j}\right)=1 / g_{m j}\left(1+s \tau_{m j}\right)$. Again, s is the Laplace transform variable in units of Hz . After some algebra, these can be rearranged in the following form:

$$
\left[\begin{array}{l}
V_{0} \\
I_{0}
\end{array}\right]=\left\lfloor\begin{array}{cc}
1+\frac{r_{i j} g_{m j}}{2}\left(1+s \tau_{m}\right) & r_{i j}+\frac{r_{i j}^{2}}{4} g_{m j}\left(1+s \tau_{m}\right) \\
g_{m j}\left(1+s \tau_{m}\right) & 1+\frac{r_{i j} g_{m j}}{2}\left(1+s \tau_{m}\right)
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]
$$

Note that the time constant τ_{m} is the same in the two models. To see this, note that $\tau_{m}=C_{m} / G_{m}$ in the cylinder model and $\tau_{m}=c_{m j} / g_{m j}=C_{m} 2 \pi a \Delta x /\left(G_{m} 2 \pi a \Delta x\right)=C_{m} / G_{m}$ in the compartmental model.

Part c) The Taylor series approximations for $\cosh ()$ and $\sinh ()$ are

$$
\begin{aligned}
& \cosh (u)=1+\frac{u^{2}}{2!}+\frac{u^{4}}{4!}+\cdots \\
& \sinh (u)=u+\frac{u^{3}}{3!}+\frac{u^{5}}{5!}+\cdots
\end{aligned}
$$

Substituting the Taylor series for $\cosh ()$ and $\sinh ()$ in the cylinder model and keeping only the first two terms gives

$$
\left[\begin{array}{l}
V_{0} \\
I_{0}
\end{array}\right] \approx\left[\left.\begin{array}{cc}
1+\frac{q^{2} L^{2}}{2!} & \frac{1}{G_{\infty} q}\left(q L+\frac{q^{3} L^{3}}{3!}\right) \\
G_{\infty} L q^{2}\left(1+\frac{q^{2} L^{2}}{3!}\right) & 1+\frac{q^{2} L^{2}}{2!}
\end{array} \right\rvert\,\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]\right.
$$

This approximation depends on the fact that $\left|q^{2} L^{2}\right| \ll 1$, which is less restrictive than the assumption that $|q L| \ll 1$, stated in the problem set.

1) The terms on the diagonal are the same in (\dagger) and ($\dagger \dagger$) because

$$
q^{2}=1+s \tau_{m} \quad \text { and } \quad L^{2}=\frac{\Delta x^{2}}{\lambda^{2}}=\frac{\Delta x^{2}}{\left(\frac{a}{2 G_{m} R_{i}}\right)}=\frac{R_{i} \Delta x}{\pi a^{2}} 2 \pi a G_{m} \Delta x=r_{i j} g_{m j}
$$

2) The terms below the diagonal are also the same because

$$
G_{\infty} L q^{2}=\pi a^{3 / 2} \sqrt{\frac{2 G_{m}}{R_{i}}} \frac{\Delta x}{\sqrt{\frac{a}{2 G_{m} R_{i}}}}\left(1+s \tau_{m}\right)=2 \pi a G_{m} \Delta x\left(1+s \tau_{m}\right)=g_{m j}\left(1+s \tau_{m}\right)
$$

Notice that this captures only the first term in the approximation from the cylinder model. The second term can be neglected to the extent that $\left|q^{2} L^{2}\right| \ll 1$, as above.
3) For the upper diagonal term, there are two terms in both the cylinder and compartmental models. Proceeding as above, it is straightforward to show that

$$
\frac{L}{G_{\infty}}=r_{i j} \quad \text { and } \quad \frac{\mathrm{q}^{2} L^{3}}{G_{\infty}}=r_{i j}^{2} g_{m j}\left(1+s \tau_{m}\right)
$$

That is, the first terms agree exactly, but the second terms have different multipliers, $1 / 4$ for the compartmental model but $1 / 3!=1 / 6$ for the cylinder model. Fortunately the second term is small compared to the first since from Eqn. $(\dagger \dagger)$

$$
\frac{\text { second term }}{\text { first term }}=\frac{q^{3} L^{3} / 3!}{q L}=\frac{q^{2} L^{2}}{3!} \ll 1
$$

Thus satisfactory agreement between the two models can be expected as long as $|q L|^{2} \ll 1$. Note that this corresponds to choosing $\Delta x / \lambda$ to be small since

$$
|q L|^{2}=\left|\left(1+s \tau_{m}\right)\left(\frac{\Delta x}{\lambda}\right)^{2}\right|=\left(\frac{\Delta x}{\lambda}\right)^{2}\left|\left(1+s \tau_{m}\right)\right|
$$

Thus at D.C. $(s=0)$, the condition corresponds to $(\Delta x / \lambda)^{2} \ll 1$ or $\Delta x^{2} \ll \lambda^{2}$. In other words, the lengths of the cylinders corresponding to each compartment should be short compared to the length constant of the cylinder.

Part d) At frequencies above D.C., the term $\left|\left(1+s \tau_{m}\right)\right|$ increases. In the sinusoidal steady state at frequency ω, the increase goes as $\left(1+\omega^{2} \tau_{m}{ }^{2}\right)^{1 / 2}$. Thus to attain the condition $|q L|^{2} \ll 1, \Delta x^{2}$ should be chosen to be small compared to $\lambda^{2} /\left(1+\omega^{2} \tau_{m}{ }^{2}\right)$. As a rule of thumb, dendritic trees are strongly lowpass and frequencies above $1 / \tau_{m}$ are unlikely to be important. Thus choosing $\Delta x^{2} \ll$ $\lambda^{2} / 2$ is likely to be sufficient.

Problem 2

Part a) For a semi-infinite cable the membrane potential in the DC steady state is

$$
V(\chi, T \rightarrow \infty)=V_{0} e^{-\chi}=V_{0} e^{-x / \lambda}
$$

thus the $M E T$ from point 0 to χ is

$$
M E T_{0 \chi}=-\ln A_{0 \chi}=-\ln \frac{V_{0} e^{-\chi}}{V_{0}}=\chi=\frac{x}{\lambda}
$$

which is the electrotonic distance as required.
Part b) The voltage gain $A_{P R}$ can be written in terms of the transfer and input impedances as

$$
A_{P R}=\frac{V_{R}}{V_{P}}=\frac{K_{P R} I_{P}}{K_{P P} I_{P}}=\frac{K_{P R}}{K_{P P}}
$$

It was shown in class that $K_{P R}=K_{R P}$. Assume that $K_{P P}>K_{R R}$ when P is further from the soma than R as in the figure in the problem set. Then

$$
A_{P R}=\frac{K_{P R}}{K_{P P}}<\frac{K_{R P}}{K_{R R}}=A_{R P}
$$

and so $M E T_{P R}>M E T_{R P}$ as required. This means that potentials spread further away from the soma than they do toward the soma.

Problem 3

Part a) As the synapse moves away from the soma, the dendritic branches are smaller in diameter. All other things being equal, that means a higher input impedance, so a given current will produce a larger EPSP. The situation is slightly more complex because synapses produce conductance changes. In class, the membrane potential change produced by a synapse was derived as

$$
\begin{equation*}
V=E \frac{g_{s y n} / Y_{i n}}{1+g_{s y n} / Y_{i n}} \tag{*}
\end{equation*}
$$

where $g_{\text {syn }}$ is the synaptic conductance, $Y_{i n}$ is the input admittance of the dendritic branch, and E is the synaptic reversal potential. This equation is only strictly true in the D.C. steady state or for some condition in which $g_{s y n}$ is constant in time, in which case $Y_{i n}$ is a conductance. In this condition, as $Y_{i n}$ decreases (further out in the dendritic tree) V increases. Ultimately, when $g_{\text {syn }} / Y_{i n} \gg 1$, saturation occurs and no further increases are observed.

Part b) This part will be done assuming $q=1$, i.e. D.C. steady state. The task is to compute $Y_{i n}$ at the branch points of the dendritic tree, where the synapses are located. Because the cell can be reduced to an equivalent cylinder, the input admittance Y_{0} (see the sketch in the problem set for the definition of Y_{0}) can be computed as the parallel combination of the input admittances of two cylinders:

The cylinders are the equivalent cylinders for the part of the tree to the left of Y_{0} and for the part of the tree to the right of Y_{0}. Both cylinders have the G_{∞} of the parent part of the original tree, terminated by conductance G_{∞}, as shown (the sum of the terminating conductances at the 2^{n} terminal branches). Using the input admittance rule defined in class,

$$
Y_{0}=G_{\infty} \frac{\frac{G_{\infty}}{G_{\infty}}+\tanh \left(L_{\text {left }}\right)}{1+\frac{G_{\infty}}{G_{\infty}} \tanh \left(L_{\text {left }}\right)}+G_{\infty} \frac{\frac{G_{\infty}}{G_{\infty}}+\tanh \left(L_{\text {right }}\right)}{1+\frac{G_{\infty}}{G_{\infty}} \tanh \left(L_{\text {right }}\right)}=2 G_{\infty}
$$

At Y_{1}, the structure is slightly more complex:

Now the right-hand cylinder has been broken into two parallel cylinders, with $G_{\alpha} / 2$ and length $L_{\text {right }}$. The lower one has been split into the cylinder between Y_{0} and Y_{1} and the rest. Now Y_{1} is the sum of the input conductance of the L-length cylinder looking leftward and the remainder cylinder looking right (which is $G_{\infty} / 2$). This can also be expressed as $Y_{0}-G_{\infty} / 2$ Again using the conductance rule:

$$
\begin{aligned}
Y_{1} & =\frac{G_{\infty}}{2} \frac{\frac{Y_{0}-G_{\infty} / 2}{G_{\infty} / 2}+\tanh (L)}{1+\frac{Y_{0}-G_{\infty} / 2}{G_{\infty} / 2} \tanh (L)}+\frac{G_{\infty}}{2}=\frac{G_{\infty}}{2} \frac{\frac{3 G_{\infty} / 2}{G_{\infty} / 2}+\tanh (L)}{1+\frac{3 G_{\infty} / 2}{G_{\infty} / 2} \tanh (L)}+\frac{G_{\infty}}{2}=\frac{G_{\infty}}{2}\left[\frac{3+0.2}{1+3 \cdot 0.2}+1\right] \\
& =\frac{3 G_{\infty}}{2}
\end{aligned}
$$

where $Y_{0}-G_{o} / 2$ is the load admittance seen by the length- L cylinder at its left end, equal to the input admittance Y_{0} at that point, minus the contribution from the length- L cylinder itself. Alternatively, this is G_{∞} from the length- $L_{\text {lewft }}$ main cylinder plus $G_{\infty} / 2$ for the upper branch of the length $L_{\text {right }}$ cylinder.

Proceeding similarly for Y_{2}

$$
\begin{aligned}
Y_{2} & =\frac{G_{\infty}}{4} \frac{\frac{Y_{1}-G_{\infty} / 4}{G_{\infty} / 4}+\tanh (L)}{1+\frac{Y_{1}-G_{\infty} / 4}{G_{\infty} / 4} \tanh (L)}+\frac{G_{\infty}}{4}=\frac{G_{\infty}}{4} \frac{5+0.2}{1+5 \cdot 0.2}+\frac{G_{\infty}}{4} \\
& =0.9 \cdot G_{\infty}
\end{aligned}
$$

This algorithm can be continued and generalized using induction. At the next branch point, for example, $Y_{3}=0.48 G_{\infty}$.

So, at the first four branch points, the input conductances are $2,1.5,0.9$, and 0.5 times G_{∞}. Clearly $K_{i i}$ is increasing with branching, so the injection of fixed current will lead to larger EPSPs.

Part c) If the synapses are modeled correctly, as conductance changes, then Eqn. (*) should be used. This equation is a monotonic function of $g_{s y n} / Y_{i n}$, so the same qualitative effect will be seen, but the saturation of Eqn. (*) when $g_{\text {syn }}>Y_{i n}$ will limit the extent of the rise distally.

