
580.439/639 Homework 7 Solutions 

Problem 1 

Part a)  For the cylinder model: 

 

� 

q = 1+ sτm      L = Δx
λ

= Δx
a

2GmRi

     G∞ = 1
riλ

= π a3 2 2Gm

Ri

 

where s is the Laplace transform variable in units of Hz. In class, s was dimensionless, because the 
transform was done in terms of T=t/τm  as the time variable. If t had been used, then the result would 
have been as above. Using t instead of T is appropriate here, because t will be used for the 
compartmental model. For that model: 

 

� 

rij = RiΔx
π a2       gmj = Gm 2π aΔx      cmj = Cm 2π aΔx  

Part b) In class, it was shown that the cylinder model gives the following: 
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For the compartmental model, mesh equations can be written as follows: 

 

� 

V0 = I0
rij
2

+ (I0 − I1) zmj

V1 = (I0 − I1) zmj − I1
rij
2

 

where zmj is the parallel combination of gmj and cmj : 

� 

zmj =1 (gmj + scmj ) =1 gmj 1+ sτmj( ) . Again, s is 
the Laplace transform variable in units of Hz. After some algebra, these can be rearranged in the 
following form: 
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Note that the time constant τm is the same in the two models. To see this, note that τm=Cm/Gm in the 
cylinder model and τm=cmj /gmj =Cm 2πa Δx / (Gm 2πa Δx) = Cm/Gm in the compartmental model. 

Part c)  The Taylor series approximations for cosh() and sinh() are 
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Substituting the Taylor series for cosh() and sinh() in the cylinder model and keeping only the first 
two terms gives 
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This approximation depends on the fact that |q2L2|<<1, which is less restrictive than the assumption 
that |qL|<<1, stated in the problem set.  

1) The terms on the diagonal are the same in (†) and (††) because 
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q2 = 1+ sτm      and     L2 = Δx 2

λ2 = Δx 2

a
2Gm Ri
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2) The terms below the diagonal are also the same because 

 

� 

G∞Lq
2 = π a3 2 2Gm

Ri

Δx
a

2GmRi

(1+ sτm ) = 2π aGmΔx (1+ sτm ) = gmj (1+ sτm ) 

Notice that this captures only the first term in the approximation from the cylinder model. 
The second term can be neglected to the extent that |q2L2|<<1, as above. 

3) For the upper diagonal term, there are two terms in both the cylinder and compartmental 
models. Proceeding as above, it is straightforward to show that 
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L
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2 gmj (1+ sτm )  
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That is, the first terms agree exactly, but the second terms have different multipliers, 1/4 
for the compartmental model but 1/3! = 1/6 for the cylinder model. Fortunately the 
second term is small compared to the first since from Eqn. (††) 

 

� 

second term
first term

= q3L3 3!
qL

= q2L2

3!
<< 1 

Thus satisfactory agreement between the two models can be expected as long as |qL|2<<1. Note that 
this corresponds to choosing Δx/λ to be small since 
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Thus at D.C. (s=0), the condition corresponds to (Δx/λ)2 <<1 or Δx2<<λ2. In other words, the lengths 
of the cylinders corresponding to each compartment should be short compared to the length 
constant of the cylinder. 

Part d)  At frequencies above D.C., the term |(1+sτm)| increases. In the sinusoidal steady 
state at frequency ω, the increase goes as (1+ω2τm

2)1/2. Thus to attain the condition |qL|2<<1, Δx2 
should be chosen to be small compared to λ2/(1+ ω2τm

2). As a rule of thumb, dendritic trees are 
strongly lowpass and frequencies above 1/τm are unlikely to be important. Thus choosing Δx2 << 
λ2/2 is likely to be sufficient. 

Problem 2 

Part a)  For a semi-infinite cable the membrane potential in the DC steady state is 
 V (χ,T →∞) =V0e

−χ =V0e
− x/λ  

thus the MET from point 0 to χ is 

 MET0χ = − lnA0χ = − lnV0e
−χ

V0
= χ = x

λ
 

which is the electrotonic distance as required. 

 Part b)  The voltage gain APR can be written in terms of the transfer and input impedances as  

 APR =
VR
VP

= KPRIP
KPPIP

= KPR

KPP

 

It was shown in class that KPR = KRP. Assume that KPP>KRR when P is further from the soma than R 
as in the figure in the problem set. Then 

 APR =
KPR

KPP

< KRP

KRR

= ARP  
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and so METPR >METRP as required. This means that potentials spread further away from the soma 
than they do toward the soma. 

Problem 3 

 Part a) As the synapse moves away from the soma, the dendritic branches are smaller in 
diameter. All other things being equal, that means a higher input impedance, so a given current will 
produce a larger EPSP. The situation is slightly more complex because synapses produce 
conductance changes. In class, the membrane potential change produced by a synapse was derived 
as 

 

� 

V = E
gsyn /Yin

1+ gsyn /Yin
 (*) 

where gsyn is the synaptic conductance, Yin is the input admittance of the dendritic branch, and E is 
the synaptic reversal potential. This equation is only strictly true in the D.C. steady state or for some 
condition in which gsyn is constant in time, in which case Yin is a conductance. In this condition, as 
Yin decreases (further out in the dendritic tree) V increases. Ultimately, when gsyn/Yin >>1, saturation 
occurs and no further increases are observed. 

Part b)  This part will be done assuming q=1, i.e. D.C. steady state. The task is to compute 
Yin at the branch points of the dendritic tree, where the synapses are located. Because the cell can be 
reduced to an equivalent cylinder, the input admittance Y0 (see the sketch in the problem set for the 
definition of Y0) can be computed as the parallel combination of the input admittances of two 
cylinders: 

G∞
G∞

Lleft G∞
G∞

Lright

Y0  

The cylinders are the equivalent cylinders for the part of the tree to the left of Y0 and for the part of 
the tree to the right of Y0. Both cylinders have the G∞ of the parent part of the original tree, 
terminated by conductance G∞, as shown (the sum of the terminating conductances at the 2n terminal 
branches). Using the input admittance rule defined in class,  

 

� 

Y0 = G∞
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+ tanh(Lleft )

1+ G∞

G∞

tanh(Lleft )
+ G∞

G∞

G∞

+ tanh(Lright )

1+ G∞

G∞

tanh(Lright )
= 2G∞  

At Y1, the structure is slightly more complex: 
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Y1
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Lleft
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Now the right-hand cylinder has been broken into two parallel cylinders, with G∞/2 and length Lright. 
The lower one has been split into the cylinder between Y0 and Y1 and the rest. Now Y1 is the sum of 
the input conductance of the L-length cylinder looking leftward and the remainder cylinder looking 
right (which is G∞/2). This can also be expressed as Y0–G∞/2 Again using the conductance rule: 
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2

 

where Y0-G∞/2 is the load admittance seen by the length-L cylinder at its left end, equal to the input 
admittance Y0 at that point, minus the contribution from the length-L cylinder itself. Alternatively, 
this is G∞ from the length-Llewft main cylinder plus G∞/2 for the upper branch of the length Lright 
cylinder. 

Proceeding similarly for Y2 
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� 

Y2 = G∞

4

Y1 −G∞ 4
G∞ 4

+ tanh(L)

1+ Y1 −G∞ 4
G∞ 4
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+ G∞

4
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4
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4
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This algorithm can be continued and generalized using induction. At the next branch point, for 
example, Y3=0.48G∞. 

So, at the first four branch points, the input conductances are 2, 1.5, 0.9, and 0.5 times G∞. 
Clearly Kii is increasing with branching, so the injection of fixed current will lead to larger EPSPs. 

Part c)  If the synapses are modeled correctly, as conductance changes, then Eqn. (*) should 
be used. This equation is a monotonic function of gsyn/Yin, so the same qualitative effect will be seen, 
but the saturation of Eqn. (*) when gsyn>Yin will limit the extent of the rise distally. 

 

 

 


