
580.439/639  Homework #6 Solutions 

Problem 1 

Part a)  The derivation of the cable equation is the same up to the specification of the 
membrane impedance.  That is, we can start from 

 1
ri+re

 ∂
2V
∂x2

 = im(x,t,V) = membrane current/unit length of cylinder  

the membrane impedance is specified in the Laplace or Fourier domain, so this equation must be 
transformed.  In this problem, the Fourier domain is more convenient, so 

 1
ri+re

 ∂
2V
∂x2

 = im(x,jω,V)  

and 
 im(x,jω,V) = 1

zm
 V 

where the bars indicate that the variables have been Fourier transformed.  The variable ω in this 
case is radian frequency, because the differential equation has not been transformed to non-
dimensional form.  The resulting cable equation is then 

 1
ri+re

 ∂
2V
∂x2

 ≈ 1ri
 ∂

2V
∂x2

 = 1
zm

 V     or     zm
ri

 ∂
2V
∂x2

 - V = 0 (*) 

Part b)  The boundary conditions for this case are 

 1
ri

 ∂V
∂x x=0

 = -I0 δ(t)     and     V(x→∞,t) = finite  

The assumption of sinusoidal steady state is the equivalent of a boundary condition in time.  Fourier 
transforming the spatial boundary condition at x=0 gives 

 1
ri

 ∂V
∂x x=0

 = -I0 

The solution to the differential equation (*) is 

 V(x,jω) = A(jω) eγx + B(jω) e-γx (**) 
where 
 γ  = ri

zm
 (***) 

Note that γ is a complex number.  For the purposes of evaluating the boundary conditions below, 
the positive-real root of Eqn. (***) is used for γ .  The final solution is exactly the same if the 
negative-real root is chosen, except for the trivial difference that B(jω) is zero, not A(jω).  By the 
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same argument that was given in class, the regularity condition as x→∞ implies that A(jω) = 0, so 
the solution (**) becomes 
 V(x,jω) = B(jω) e-γx 

and the boundary condition at 0 implies that 

 1
ri

 ∂V
∂x x=0

 = -γ  B(jω)
ri

 = -I0       or      B(jω) = ri
γ   I0       so that       V(x,jω) = I0 ri

γ  e-γx 

Note that ri/γ = rizm = 1/Y∞, by analogy with G∞. 

Part c)  Writing γ  as  (g + jh) where g = Re[γ] and h = Im[γ], gives 

 

� 

V (x, jω) = I0
ri

g + jh
e−gxe− jhx  (****) 

In keeping with the usual interpretation of the Fourier transform, Eqn. (****) is the complex 
magnitude of the potential at point x for a sinusoid at frequency ω. The component of the potential 
at frequency ω is obtained by multiplying by e− jω t  and taking the real part 

 

V (x,t) = Re I0
ri

g + jh
e−gxe− jhxe− jω t

⎡

⎣
⎢

⎤

⎦
⎥

= I0
ri

g2 + h2
e−gx cos(hx +ωt −φ)

 (*****) 

where φ is the phase of the terms multiplying the exponentials, i.e. − arctan(h g) . 

 From Eqn. (*****) it is clear that the potential decays as e-gx along the cylinder so that 1/g is 
the space constant at frequency ω. The potential oscillates along the cylinder with spatial frequency 
h.  

Part d)  For the special case of passive linear cable, 1/zm = gm + jωcm and 

 γ  = ri(gm + jωcm) = ri gm 1 + jω cm
gm

 = 1
λ

 1 + jωτm  

Note that γ = rigm = λ at D.C., so we haven’t make any mistakes yet. Continuing, 

 Re γ  = 1
λ

 Re 1 + jωτm  = 1
λ

 Re 1 + ω2τm2
0.25 exp jarctan(ωτm)/2  

where, once again, the positive-real root has been used.  The A.C. space constant 1/Re[γ] can be 
written as 

 1
Re γ

 = λ
Re 1 + ω2τm2

0.25 exp jarctan ωτm /2
 = λ

1 + ω2τm2
0.25 cos arctan ωτm /2
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At low frequencies, ω<<1/τm, the A.C. space constant is approximately λ.  At the cutoff frequency, 
where ω = 1/τm, the A.C. space constant is λ/1.41.0.92 = 0.77.λ.  
As frequency increases, the A.C. space constant gets smaller in 
magnitude. 

 The important point here is that, as frequency increases, 
the space constant gets shorter and the cylinder gets 
electrotonically longer. Thus high frequency disturbances spread 
less. This is another way of saying that cylinders have a low-
pass character. 

Part e)  The circuit at right shows the small-signal 
equivalent of a membrane with a leakage and delayed rectifier 
channel.  The parameters were derived in a previous homework 
problem and are given in terms of Laplace transforms.   For this 
circuit, 1/zm is given by 

1
zm

 = jωC + 1
R1

 + 1
R0 + jωL = 

-ω2 LC + jω R0 C + L
R1

 + 1 + R0
R1

R0 + jωL  

so the input conductance of the dendritic tree Y∞ is given by 

 

Y∞ = 1
rizm

 = 
-ω2LC + jω R0C + L

R1
 + 1 + R0

R1
ri R0 + jωL

        = 1
rirp

 
-ω2LC rp

R0
 + jω rp C + L

R0 + R1
 + 1

1 + jω L
R0

        = G∞ 
-ω2LC rp

R0
 + jω rp C + L

R0 + R1
 + 1

1 + jω L
R0

 

where rp = R0 in parallel with R1, i.e. R0R1/(R0+R1) and G∞ = 1/√rirp, by analogy with the usual 
definition.  This is the square root of a second-order admittance.  A second-order system can be 
resonant under appropriate circumstances, and if the system under the radical is resonant, then the 
radical will be resonant also, albeit with a smaller gain.  For example, if the system has high Q (i.e. 
1/jω0C << R1 and jω0L >> R0 then R1>>R0, rp≈R0 and the resonant frequency  is ω0 ≈ 1/√LC. 

Problem 2 

Part a)  If there are no external circuits carrying current out of or into the cell of interest, 
then the axial current inside the cell at a point x, ii(x), must be equal to the total extracellular current 
ie(x) flowing in the opposite direction at the same point, i.e. 

 ii(x) = - ie(x) 
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This equivalence follows from consideration of the cable structure below, where the rectangular 
boxes represent the internal, external, and membrane impedances. 

i  (x)i

ei  (x)

inside of cell

outside of cell

im1 im2 imn

 

Successive application of Kirchoff’s law to the nodes inside and then outside the cell will show that 

 ii(x) = imj∑
j=1

n
 = - ie(x) 

Substitution of the Ohm's law relationships used in deriving the cable equation gives 

 
1
ri

 ∂Vi
∂x

 = - 1re
 ∂Ve
∂x  

subtracting 1/ri ∂Ve/∂x from both sides of the equations above give 

 
1
ri

 ∂Vi
∂x

 - 1ri
 ∂Ve
∂x

 = - 1re
 ∂Ve
∂x

 - 1ri
 ∂Ve
∂x  

 
1
ri

 ∂(Vi-Ve)
∂x

 = - 1
re

 + 1ri
 ∂Ve
∂x  

rearranging and using the fact that transmembrane potential V = (Vi - Ve) gives 

 
∂Ve
∂x

 = - re
re+ri

 ∂V∂x  (1.1) 

Part b)  Integrating equation 1.1 gives 

 

∂Ve
∂x

 dx
0

x

 = - re
re+ri

 ∂V
∂x

 dx
0

x

 

carrying out the integrals and noting that V(0) = 0 due to the smash and that Ve*(x) = Ve(x) - Ve(0) 
by definition gives 
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 Ve
*(x) = - re

re+ri
 V(x) 

Part c)  In this case, all the cells are undergoing the same membrane potential events, so the 
potentials, both intracellular and extracellular, at any depth x should be the same near all the cells.  
As a result, potential Ve should vary only along the x axis and extracellular currents should also 
flow predominantly parallel to the x axis.  The following equation, derived in class, relates the 
extracellular potential Ve to the cells' membrane currents im(x). 

 
∂2Ve

∂x2
 = - reim

 

Using this equation, Ve can be computed by twice integrating the im(x) data shown at left in the 
problem statement and multiplying by -re. 

 


