
580.439/639  Solutions to Homework #5 

Problem 1 

Part a)  The isoclines for this system are the equations: 

 

dx
dt

= 0     ⇒      y = −x3 + 3x

dy
dt

= 0     ⇒      y = 3x + 4.5
 

The isoclines are plotted below (lines marked “d()/dt=0”). 

 

 

The arrows show the directions of flow in the phase plane relative to the two isoclines.  Notice that 
the x-arrows are much larger than the y-arrows, as is (qualitatively) consistent with the problem 
statement (ε<<1).  The equilibrium point at the intersection of the isoclines occurs at  

 x = − 4.53 = −1.65          y = 4.5− 3 4.53 = −0.45  

The Jacobian for this system is: 
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from which it follows that the eigenvalues at a point (x,y) are the roots of: 
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Because ε<<1, the first term under the radical, which goes as 1/ε2, is large compared to the second 
term under the radical, which goes as 1/ε.  By factoring out the common expression outside and 
under the radical and ignoring the +1 component of the common expression (because  (3x2-3)/ε >> 
1), the eigenvalues can be written as 
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Because ε<<1, the radical can be approximated as  1+ε  ≈ 1+ε/2, and after some algebra, 

 λ ≈ −
3x2 − 3

ε
          − 3x2

3x2 − 3
 

At the equilibrium point, λ ≈ -5.18/ε and λ ≈ -1.58.  Both eigenvalues are real and negative, so the 
equilibrium point is stable.   

If there were a limit cycle, it would have to surround the equilibrium point, but there is no 
way to draw a limit cycle consistent with the direction of trajectories in the phase plane for the 
region y < eq. pt and x ~ eq. pt. The approximate trajectories are drawn in the figure above. 
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Part b)  The phase space for this case is drawn below.  In this case, the equilibrium point is 
(0,0).  Carrying out the same calculations as above yields the following eigenvalues at the 
equilibrium point: 

 λ ≈ −
3x2 − 3

ε
     − 3x2 + 2

3x2 − 3
 

from which it follows that at (0,0), λ 
≈ 3/ε and 2/3, both positive and real, 
and the equilibrium point is 
unstable. The Poincare-Bendixson 
theorem applies here and the system 
has a limit cycle. Approximate 
trajectories from the two initial 
conditions are shown in the figure 
(fuzzy lines).  These should merge 
with the stable limit cycle (also 
fuzzy), which can be demonstrated 
by simulation. 

The phase plane plots below 
show the limit cycle of the system 
computed by simulation with the 
relative time scale parameter ε set to 
two values, 0.5 and 0.1.  In the first case, the difference in time scale of the differential equations is 
small and the actual trajectories are not well approximated by the assumed trajectories drawn above.  
In the second case, the trajectories follow the dx/dt=0 nullcline quite closely. 
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Problem 2 

Part a)  For the model described in the problem statement, there is only one differential 
equation: 

 C dV
dt

= Iext −GNam∞(V ) V − ENa( )−GL (V − EL )  

Part b)  The phase plane for this 
system with Iext=0 is shown at right. The 
equilibrium points are the points where  dV/dt 
= 0, at the green dots. These can be found 
graphically or with a zero-finding program 
(like fzero() in Matlab) to be -52.5, -40.3, and 
30.9. 

Part c)  The arrows in the phase plane 
plot show the direction that the system will 
move along the V axis. From these, it is clear 
that the equilibrium points at -52.5 and 30.9 
are stable whereas the one at -40.3 is unstable. 
A qualitative argument for these conclusions, 
from the arrows, is that the system will 
asymptotically approach one of the outer two equilibrium points from any point along the V axis. 
The point at -40.3 is unstable because trajectories move away from it for all nearby points. 

 The Jacobian of this system is a scalar, equal to the derivative w.r.t. V of the r.h.s. of the 
differential equation: 

 Jac =
d Iext −GNam∞(V ) V − ENa( )−GL (V − EL )⎡⎣ ⎤⎦

dV
Eqpt

 

The equilibrium point is stable if 
Re[Jac]<0, meaning a negative slope of 
the plot above at the equilibrium point 
and vice-versa. Since the Jacobian is 
just the slope of the r.h.s. of the 
differential equation at the equilibrium 
point, these two arguments say the same 
thing. 

Part d)  As Iext increases, the 
dV/dt plot moves vertically. When Iext ≈ 
15.8, the two equilibrium points 
between -40 and -50 meet and 
disappear. Then the only stable 
equilibrium point is at 31.1. This is like 
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a saddle-node bifurcation. Izhikevich argues that this is a model for the rising phase of an action 
potential. If the model were suddenly depolarized by such a current, the membrane potential would 
jump from ~-50 mV to ~-30 mV (assuming it started at -50 mV).  

Problem 3 

 More details on these manipulations can be found in the Rinzel and Ermentrout chapter. 
Answers are shown as red lines below. 

Part a)  The depolarizing 
pulse should be applied as 
shown to move the 
trajectory across the UPO, 
which serves to separate 
the stable equilibrium 
point from the limit cycle. 
The ringing is caused by 
the fact that the 
equilibrium point is a 
stable spiral in this case. 
(The ringing is not a 
necessary part of the 
answer since you had no 
way of knowing about it.) 

 

Part b)  In this case, the 
voltage trajectory must 
carry across the UPO into 
the region of the limit 
cycle. 

 

 

Part c)  The voltage step 
can be placed at many 
points along the right side 
of the limit cycle. Its goal is 
to move the trajectory 
across the stable manifold 
of the saddle node, which 
moves the trajectory into 
the region of attraction of 
the resting potential. One 
such trajectory is shown in 
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the phase plane at right along with the accompanying voltage waveform. Notice that only a very 
small voltage displacement is necessary (arrow in the phase plane). 

 

Part d)  This case is 
essentially the same as part 
a), where the voltage step 
is applied so as to transfer 
the trajectory across the 
UPO into the vicinity of 
the high-voltage 
equilibrium point. In this 
case, the equilibrium point 
is a spiral, so the trajectory 
oscillates after the transfer. 

 

 

 

 

Part e)  In this case, the 
goal is to move the 
trajectory across the 
stable manifold of the 
saddle node. 

 

 

 

 

Part f)  A depolarizing pulse can only make transfers like that shown in part e) above. At 
small currents (smaller than used in part e), the trajectory will return to rest; larger currents, like the 
one in e), put the trajectory into the limit cycle (SPO); larger current pulses that transfer the 
trajectory across both stable manifolds produce an action potential followed by a return of the 
trajectory to rest. So, it is not possible to transfer from the resting potential directly to the upper 
equilibrium point with a single depolarizing pulse. 

From the upper equilibrium point, a depolarizing pulse which moves the trajectory across the 
UPO, the SPO, and the stable manifold (to a point similar to the endpoint of the arrow in part c) 
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would produce an action potential followed by a return to the rest potential. Thus a transfer to the 
upper equilibrium point to the resting potential is possible with a single pulse. 

 


