
580.439/639 Homework #3 Solutions 

Problem 1 

Part a)  If the membrane is depolarized, the number of open gates increases in the HH 
K+ channel; in the model, this means that the gating charges move to the outer membrane 
surface.  With this definition of gating charge movement, a positive gating charge zG is required 
to favor the open states as membrane potential increases (depolarizes). 

Part b)  Using the rate theory formulation developed in class, the unidirectional rates of 
transfer over the barrier are given by (k is the constant associated with rate theory models): 

 
rate of opening = fraction closed ⋅  k e− G−GC−λ zG FV( )/RT

rate of closing = fraction open ⋅  k e− G+ 1−λ( )zG FV( )/RT
 

(1.2)
 

and 

 dn
dt

=  rate of opening - rate of closing  

Substituting Eqns. 1.1 and 1.2 and noting that the fraction closed is (1-n) when the fraction open 
is n gives 

 dn
dt

= (1− n)k e− G−GC−λ zGFV( )/RT − nk e− G+(1−λ )zGFV( )/RT  

Collecting terms in n: 

 dn
dt

= k e−(G−GC )/RT eλ zGFV /RT 1− n 1+ e− GC+zGFV( )/RT( )⎡
⎣

⎤
⎦  (1.3) 

To simplify, define the following dimensionless variables: 

 vh =
GC

zGRT
      α=ke–(G-GC )/RT       v= FV

RT
 

Then Eqn. 1.3 can be written in terms of simplified variables as: 

 dn
dt

=α eλ zGv 1− n 1+ e− zG v+vh( )( )⎡
⎣

⎤
⎦  (1.4) 

which is the form given in the problem assignment. 

Part c)  The HH differential equation for n in terms of n∞(V) and τn(V) is 

(1.1) 



Solutions to HW #3 2 

 dn
dt

= −
n
τn

+
n∞
τn

 (1.5) 

Comparison of Eqns. 1.4 and 1.5 yields the following expressions for n∞(V) and τn(V): 

 n∞(v) = 1
1+ e− zG v+vh( )           τ n (v) = 1

α eλ zGv 1+ e− zG v+vh( )⎡⎣ ⎤⎦
 (1.6) 

Part d)  In order to fit Eqns. 1.6 to the 
HH model, the values of four parameters must 
be specified: zG, vh, α, and λ.  Some trial and 
error will show that Eqns. 1.6 are similar to, but 
not identical to the HH equations.  That is, 
using the HH equations in the problem set gives 
expressions for n∞ and τn which are not the 
same as Eqn. 1.6; Eqns. 1.6 are an 
approximation of the HH model and can give a 
close, but not perfect fit.  Therefore there is not 
one correct answer to this problem. The plot at 
right shows the HH equation for n∞(V) and 
τn(V) (blue) and for the model equations in Eqn. 
1.6 (red) using the parameters marked on the 
plot.  

This fit was done by varying the 
parameters to minimize the absolute value of 
the difference between the barrier and HH 
model curves. 

This rate theory model is only a crude 
fit to the HH equations (and to the HH data), 
but the fit could probably be improved by 
adding more barriers.  Presumably, Hodgkin 
and Huxley started with a barrier model and 
then added "fudge factor" terms to make the 
result a more accurate reflection of their data. 

Part e)  The value of 4.8 given by Hille (Fig. 13, p. 42) and Johnston and Wu (Fig. 6.20, 
p. 163) is for the potassium conductance, which is proportional to n4, whereas we are 
considering the motion of only one gating particle in this problem, i.e. n.  Hille’s value should be 
about 4 times ours, which is only approximately so. 

Problem 2 

The energy diagram at right below is the basis for the analysis.  There is a difference G* 
between the closed (C) and open (O) states of the channel, without the contribution of the spring; 
G*>0, so that the channel tends to be in the closed state.  The spring's effect on the channel can 
be modeled by considering the energy transferred into or out of the spring when the channel 
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closes or opens.  Suppose the length of the spring with the 
channel closed is dc and the spring's length with the channel 
open is do.  Both dc and do are functions of x, the separation 
between the cilia.  Then the change in potential energy ΔGs of 
the spring when the channel opens is 

 ΔGS = sξ dξ
dc

do∫ = s
do
2

2
−
dc
2

2
⎛
⎝⎜

⎞
⎠⎟

 

where s is the spring constant.  This amount of energy is added 
to the open state of the channel in the diagram above, because 
when the channel opens, this amount of energy must be added to the system.  In fact, ΔGs < 0 
because do < dc, and the attachment of the spring to the channel favors the open state of the 
channel; this makes sense in that the spring tends to pull the channel into the open state.  We 
assume that a fraction λ of the spring's energy is transferred when the channel is passing over the 
energy maximum.  In fact, λ does not affect the final answer to part a). 

The rate constants ko and kc are given by 

 
kc = (const) e

−(G−G*−(1−λ )ΔGS )/RT

ko = (const) e
−(G+λ ΔGS )/RT

 (2.1) 

The rate of channel opening is given by 

 dO
dt

= −kcO + koC = −kcO + ko(T −O) = koT − (ko + kc )O  (2.2) 

where T is the total amount of channel,  T = C + O.  In the steady state,  dO/dt = 0 and 

 O = T ko
ko + kc

 (2.3) 

so that 

 prob. open = O
T

= (const) e-(G+λΔGS )/RT

(const) e-(G+λΔGS )/RT + (const) e-(G-G*-(1-λ )ΔGS )/RT  

with some algebra 

 O
T

= 1
1+ e(G*+ΔGS )/RT

= 1
1+ e(G*+s(do

2 /2−dc
2 /2)/RT
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All that remains is to specify the dependence of  
ΔGS  on x, the spacing of the cilia.  To do this fully 
requires various assumptions about the geometry of the 
system, and quite complex equations can be derived.  
Consider the simple case sketched at right: x is the 
spacing of the cilia, y is the vertical distance from the tip 
of one cilium to the tip of the next, and Δx is the change in 
position of the tip of the spring when the channel opens.  
In real hair cells, the distance traveled by the spring when 
the channel opens is small, i.e. (do-dc) << do, dc.  In this case, the spring lengths do and dc can be 
computed as 

 

dc = x2 + y2

do = (x − Δx)2 + y2

= x2 + y2 − 2xΔx + Δx2

= x2 + y2 1− 2xΔx − Δx2

x2 + y2

≈ x2 + y2 1− xΔx
x2 + y2

⎛
⎝⎜

⎞
⎠⎟
= dc 1−

xΔx
dc
2

⎛
⎝⎜

⎞
⎠⎟
= dc −

xΔx
dc

  

where the assumption Δx << x has been used to make the approximation of do on the last line.  
With these assumptions, (do-dc) ≈ -x.Δx/dc which is negative because do < dc.  Furthermore, do ≈ 
dc = dc(x), the function of the spread of the cilia given on the first line above.  With this 
assumption 

 s do
2 2 − dc

2 2( ) == s
2
do + dc( ) do − dc( ) ≈ −sdc xΔx / dc = −s xΔx  

so that 

 O
T

=
1

1+ e(ΔG*− s x Δx )/RT
 

As the cilia are spread apart, x increases, the exponential in the denominator decreases, and O/T 
increases, opening channels which depolarize the cell.  This is thought the be the means by 
which mechanical transduction occurs in hair cells. 

Part b)  The rate of opening is given by Eqn. (2.2).  At time 0-, i.e. just before the cilia 
are moved apart, the system is in steady state with O(0-) open channels.  At this time, dO/dt = 0, 
so Eqn. 2.3 applies, and 

 O(0− ) = T ko(x0 )
ko(x0 ) + kc (x0 )

 (2.3a) 

y

x

dc

xΔ

od
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The rate constants in the equation above have their values at separation x0.  When the cilia are 
moved apart to x=x

1
, the values of ko and kc will change and the system will no longer be in 

steady state.  Now 

 dO
dt

= ko(x1T − ko(x1) + kc (x1)[ ]O  

Substituting the steady-state value for O at time 0- from Eqn. 2.3a gives the initial rate of change 
of open channels 

 

dO
dt t=0+

= ko(x1)T − ko(x1) + kc (x1)[ ]T ko(x0 )
ko(x0 ) + kc (x0 )

=
ko(x1)kc (x0 ) − ko(x0 )kc (x1)

ko(x0 ) + kc (x0 )
T

 

 

Problem 3 

Part a) The barrier system is shown below. 

 

Two A states are shown, to account for the fact that the energy diagram is cyclical, like the 
reaction system; of course, they are the same state and have the same energy level. Writing out 
the rate constants in terms of barrier energies: 

 k1k2 k3 = (const)e
−GA /RT e−GB /RT e−GC /RT

k−1k−2 k−3 = (const)e
−G−A /RT e−G−B /RT e−G−C /RT

 (5) 

taking the ratio k1k2k3 / k-1k-2k-3 gives 

 k1k2 k3
k−1k−2 k−3

= e− GA −G−A +GB −G−B +GC−G−C[ ]/RT  (6) 

The sum of barrier energies in the exponential of Eqn. 6 is zero, since it begins at the ground 
state energy of the A state and ends up at the same level. Thus, the cyclical nature of the energy 
diagram forces k1k2k3 / k-1k-2k-3 to be 1. 
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Part b)  The fluxes are given by the three equations below. Ji is the flux leaving the ith 
state. 

 
JA = k1 A− k−1 B
JB = k2 B− k−2 C
JC = k3C − k−3 A

 (7) 

If the fluxes are zero, 

 

0 = k1 A − k−1 B     ⇒      B =
k1
k−1

A

0 = k2 B− k−2 C     ⇒      C =
k2
k−2

B

0 = k3C − k−3 A     ⇒      A = k3
k−3

C

 (8) 

Now, substituting the right-hand equations in Eqn. 8 into one another gives 

 A =
k3
k−3

C =
k3
k−3

k2
k−2

B =
k3
k−3

k2
k−2

k1
k−1

A  (10) 

Because A must equal A, it follows from Eqn. 9 that  k1k2k3 / k-1k-2k-3=1. 

Part c)  Using the definitions of fluxes in Eqn. 7, suppose that J=JA=JB=JC>0. Recall that, 
in a steady state, the fluxes in a system like this one must all be equal in order that the 
concentrations be constant in time. Then, from Eqn. 7, 

 

J = k1 A − k−1 B>0     ⇒      A >
k−1
k1

B

J = k2 B− k−2C >0     ⇒      B> k−2
k2

C     ⇒      A >
k−1
k1

k−2
k2

C

J = k3C − k−3 A>0     ⇒      C >
k−3
k3

A     ⇒      A >
k−1
k1

k−2
k2

k−3
k3

A

 (11) 

The bottom rightmost equation implies that, in a steady state, A>A, which cannot be true, as long 
as A, B, and C are non-zero. Thus a steady state with non-zero net flux cannot exist in a system 
like this one.  

Part d) Now the rate constants are modified by the membrane potential, so that the 
barrier diagram is changed by elevating the B state and the barriers leading to it. 
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The modified barrier heights include potential as 

 
′GA = GA + λAzFV ′G−A = G−A + (λA −1)zFV
′GB = GB + (λB −1)zFV ′G−B = G−B + λBzFV

 

It is evident that the argument of part a) still holds and microscopic reversibility is still true. This 
would not be so if the charge z varied among the states, as in the transporter model considered in 
class. 

 


