
580.439/639 Solutions to Homework #1 

Problem 1 

Part a)  At equilibrium, the electrochemical potentials of molecules in the A and B states 
will be equal, so 

 µal
A = µal

B
 

or 

 µal
0A + RT lnCal

A + FVA = µal
0B + RT lnCal

B + FVB 

Note that zal = +1 and that it has been assumed that the chemical interactions of alamethecin with 
the lipid cause µal

0A ≠ µal
0B.  Solving for the concentration ratio gives 

 
RT ln Cal

B

Cal
A

 = µal
0A - µal

0B + F(VA - VB)
 

Using the fact that ΔV = VB - VA and exponentiating gives 

 
 Cal

B

Cal
A

 = exp 
µal

0A - µal
0B - F ΔV
RT

 
(1)

 

Part b)  There are two reactions at equilibrium: 

where C is the density of channels in the membrane.  At equilibrium, 

 
CB

CA
 = KAB            and               CC

CB 2
 = K2

 
(2)

 

in addition, the total amount of alamethecin is fixed, so that 

 CA + CB + 2CC = Q (3) 

Substituting Eqns. 2 into Eqn. 3 to eliminate CB and CC gives 

 CA + KABCA + 2K2 KABCA 2 = Q 

or 

 
CA 2 + 1 +KAB

2K2 KAB
2

 CA - 1
2K2 KAB

2
 Q = 0

 

which can be solved using the quadratic formula giving 
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CA = 1 + KAB

4K2 KAB
2

 1 + 8K2 KAB
2 Q

1 + KAB 2
  - 1

 
(4)

 

The concentrations of B and C then follow from Eqns. 2: 

 CB = KABCA     and     CC = K2 KABCA 2
 

Part c)  Assume that KAB >> 1; then Eqn. 4 simplifies to 

 
CA ≈ 1

4K2 KAB
 1 + 8K2 Q  - 1

 

If  K2Q << 1, then  1 + 8K2Q  ≈ 1 + 4K2Q  and 

 
CA ≈ Q

KAB
     so that     CB ≈ Q     and      CC ≈ K2 Q2

  

This result makes sense, because the assumptions mean that both equilibria are strongly pushed in 
the direction of B; most of the alamethecin is in the B state as a result, and then the concentrations 
of A and C follow directly from Eqns. 2.  In this situation, CC depends only on K2 and Q, neither of 
which is voltage-dependent, so the conductance of the membrane should be constant. 

Now assume that KAB << 1; then Eqn. 4 simplifies as 

 
CA = 1

4K2 KAB
2

 1 + 8K2 KAB
2 Q  - 1

 

Once again, the radical simplifies as  1 + 8K2 KAB
2 Q ≈ 1 + 4K2 KAB

2 Q  so that 

 CA = Q     and     CB = KABQ     and      CC = K2 KABQ 2   

In this case, almost all the alamethecin is in the A state and now CB and CC depend on KAB which is 
voltage dependent (Eqn. 1), so the membrane conductance is voltage dependent. 

Problem 2 

Part a)  The equilibrium potentials are given in the table below, calculated using the Nernst 
equation. The directions of active transport are also given; these are the opposite of the passive 
fluxes. 

  Ion perilymph endolymph  Ei A.T. direction 
 Na+ 145 mM 2 mM  111 mV out of endo 
 K+ 5 157  -90 into endo 
 Ca++ 1 0.02  51 into endo 
 Cl- 120 132  2.5 out of endo 
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 HCO3- 20 31  11 out of endo 
 urea 5 5 -- equilibrium 

Part b)  The electrochemical gradient for sodium must exceed that for potassium plus twice 
that of chloride, so that the net change in electrochemical potential is negative each time a transport 
step is taken. Assuming the transport goes directly from perilymph to endolymph 

 

niµi endo − niµi peri ≤ 0
i=Na,K ,2Cl
∑

niRT ln
Ci,endo

Ci,peri

+ niziF(Vendo −Vperi ) ≤ 0
i=Na,K ,2Cl
∑

26 ln 2
145

+ 26 ln157
5

+ 2 ⋅26 ln132
120

+ (1+1− 2) ⋅90 = −16.6 mV.

 

The ni terms give the stoichiometry of the transport (1 or Na and K and 2 for Cl). The equation was 
divided by F at the third line above. Note that the electrical charges cancel, i.e. the net transport is 
neutral, so the transporter works only against the concentration gradients. The net change in 
electrochemical potential is negative, so the transporter will work under these conditions. 

Part c)  If the transporter were electrogenic, one net positive charge per cycle, then the third 
line of the equation above would be 

 26 ln 2
145

+ 26 ln157
5

+ 26 ln132
120

+ (1+1−1) ⋅90 = 70.7 mV.  

and now the transporter would run the opposite direction. 

Problem 3 

Part a)  In the steady state, the membrane potential must be steady in time; the membrane 
potential can only be steady if there is no net charge transfer through the membrane.  If Na and K 
are the only permeant ions, then there will be no net charge transfer if 
 INa + IK = 0 (1) 
The concentrations of Na and K must also be constant in steady state, which would seem to imply 
that INa = IK =0.  However, we are ignoring this condition, as usual, by assuming that the membrane 
is bounded by effectively infinite pools of solution, or that there is some transport mechanism which 
maintains the concentrations with minimal charge transfer. 

Part b)  Substituting the current equation (* in the problem set) into Eqn. 1 gives 

 FuNaRT
CNa
2 eFΔV /RT − CNa

1

eFV /RT dx
0

d

∫
+ FuKRT

CK
2eFΔV /RT − CK

1

eFV /RT dx
0

d

∫
= 0  (2) 
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where use has been made of the fact that zNa = zK = +1.  Notice that the integrals in the 
denominators are identical and non-zero, and therefore can be canceled by multiplying both sides of 
the equation by the integral, giving 

 FuNaRT CNa
2 eFΔV /RT −CNa

1⎡⎣ ⎤⎦ + FuKRT CK
2eFΔV /RT −CK

1⎡⎣ ⎤⎦ = 0   (3) 

Canceling FRT and rearranging the equation above to isolate the terms involving ΔV gives 

 uNaCNa
2 + uKCK

2⎡⎣ ⎤⎦e
FΔV /RT = uNaCNa

1 + uKCK
1⎡⎣ ⎤⎦   

from which the result in the problem set follows: 

 ΔV = RT
F
ln uNaCNa

1 + uKCK
1

uNaCNa
2 + uKCK

2   (4) 

Note that no assumptions, other than that steady state (Eqn. 1) holds and that current flow in 
the membrane is described by the Nernst-Planck equation, were made in deriving Eqn. 4.  Thus 
under the conditions of the steady state equation (1), it is not necessary to make the constant field 
assumption in order to derive a constant-field type voltage equation, for the special case of only 
monovalent cations. This equation can be extended to a membrane permeant to any number of 
monovalent cations.  However, if anions or divalent cations (Ca++) are permeant, then the 
derivation above does not work because the integrals in the denominator of Eqn. 2 are not all the 
same. 

Part c) Eqn. 4 is often used to define permeability ratios for two ions that are both permeant 
through a membrane.  Eqn. 4 can be rearranged by dividing numerator and denominator of the ratio 
within the logarithm by uK to give 

  ΔV = RT
F
ln
CK
1 + uNa

uK
CNa
1

CK
2 + uNa

uK
CNa
2

  

which can be solved for uNa /uK as 

 uNa
uK

= CK
1 −CK

2eFΔV /RT

CNa
2 eFΔV /RT −CNa

1   

This equation then defines the relative permeability of a membrane for two cations, in terms of the 
experimentally observed membrane potential ΔV when the membrane separates two solutions 
containing Na1 and K1 on one side and Na2 and K2 on the other. 

Part d)  With active transport, there are now four currents to worry about; the active Na+ 
current, the passive Na+ current, the active K+ current and the passive K+ current.  In order that the 
Na+ and K+ concentrations be steady, there must be zero net transport of both ions, so that 

 IK
a + IK

p = 0     and     INa
a + INa

p = 0   (5) 
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where the superscripts “a” and “p” refer to active and passive transport mechanisms, respectively.  
Eqns. 5 above also guarantee zero net charge transfer through the membrane (as long as only Na+ 
and K+ are permeable). The ion transporter forces rIK

a = INa
a

 , which is equivalent to saying that r 
Na+ ions are transported one way for each K+ ion transported the other way.  Combining this 
property of the active transport currents with Eqn. 5 yields the following steady-state relationship 
for the passive currents: 

 INa
p + rIK

p = 0   

With this assumption, Eqns. 3 and 4 are changed to: 

 FuNaRT CNa
2 eFΔV /RT −CNa

1⎡⎣ ⎤⎦ + rFuKRT CK
2eFΔV /RT −CK

1⎡⎣ ⎤⎦ = 0   (3a) 

and 

 ΔV = RT
F
ln ruNaCNa

1 + uKCK
1

ruNaCNa
2 + uKCK

2  (4a) 

so that the only change produced by the more complete steady-state assumption is to modify the 
permeability ratio of the ions by the pumping ratio r of the active transport mechanism. 

   


