
580.439/639 Project #1 

Project Assignment: due October 31, 2014, 5:00 P.M. in 505 Traylor or by email (PDF file) to E. 
Young. 

The purpose of this project is to study some basic properties of systems of non-linear 
differential equations like those used to model neurons. Matlab is used to solve the equations 
numerically. Matlab must be used; there are many other packages, some very nice ones for neural 
modeling, but the goal is to make sure you understand the basics. In the first part of the project, a 
simple neuron model, the Morris-Lecar equations (MLE), will be studied as an introduction to non-
linear dynamics and simulation methods. The MLE are discussed in chapt. 7 of Koch and Segev, 
second edition (the chapter by Rinzel and Ermentrout, called R&E below). Note that the model 
considered in R&E is slightly different in the first and second editions, so make sure you read R&E 
in the second edition. The second part studies a model of neural oscillation by Manor and 
colleagues J Neurophysiol 77:2736-2752, 1997. 

 It will be helpful to read the chapter on numerical methods (chapter 14 in Koch and Segev, 
second edition) by Mascagni and Sherman. This is a readable introduction to the algorithms used to 
integrate sets of differential equations and will help you to know what happens when you run a 
simulation. 

If you have not yet used the Matlab ordinary differential equation (ODE) solvers, you 
should prepare for this project by reading the sections of the Matlab doc files on commands 
beginning with ode and running some of the examples described there. 

Appendix 1 contains listings of Matlab m-files for the MLE (except for mlec). The files can 
be downloaded from the course web page. There are nine m-files in this directory: 

mlesim.m – simplest possible code to obtain a solution to the MLE. Run this first just to see 
what happens. 

mlec.m – slightly fancier version that gives you control over the initial conditions and allows 
more displays. If you wish, you can use this as the basis for your own code. 

mlode.m – the ODE file for the MLE model, called by both the above. 

mlodejac.m – function to compute the Jacobian of the MLEs. 

minf.m, winf.m, and tauw.m – functions that compute m∞, w∞, and τw for the model. 

setmleparms, getmleparms – set and get the parameters of the model. Used internally to avoid 
parameter passing which can be a problem for Matlab routines like numjac(), that may be 
useful in this project.. 

Looking at mlesim.m first, the parameters of the model are defined by two column vectors 
pml and iext  from the workspace. The parameters contained in these are defined in the comments 
and are set by the first two executable (non-comment) statements in the file, using the same names 
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as in R&E; the parameters are set to values near those used for Fig. 7.1. The last two parameters in 
pml are not used. iext contains parameters of a steady current pulse which can be applied to the 
model. The pulse has amplitude iext(1) µA/cm2 (set to 0 in mlesim), starts at time iext(2) ms and 
ends at time iext(3) ms. The rest of mlesim.m sets up the minimal conditions for running an ODE 
solver, runs the solver (ode15s) to obtain a solution (in t and y), and plots it in a figure window. The 
state vector y is [V,W]’. The code in mlesim.m should be clear to you after you have read the 
introductory Matlab material mentioned above. 

You will want to customize mlesim or mlec for your particular computing style and you will 
have to add code to the files to do the problems below (find equilibrium points, plot nullclines, etc). 

The m-file mlode.m is the ODE file for the MLE; it returns dy/dt for a point y. mlodejac.m 
returns the Jacobian of the MLEs and is needed only to speed up calculations. 

For the MLE model, it is relatively easy to work out the Jacobian matrix. However, for more 
complex models this may be too tedious. It is possible to compute Jacobians numerically with the 
Matlab numjac() function. The mlodejac.m file is set up to do the direct computation, but contains 
comments explaining the use of numjac(). 

A cogent write-up summarizing the answers to the following questions should be 
handed in on the due date listed above. The write-up should contain documentation 
supporting your answers and illustrations demonstrating the behavior of the models. The 
writeup must contain a narrative so it reads like a real paper. That is, don’t just string 
together a bunch of Matlab printouts. The grading will be based on explaining how you got 
the answer, as well as on having the answer. These Matlab files have been rewritten slightly in 
response to changes in the recent versions of Matlab. If you get errors when you run them, 
consult with the instructors. Note the value of the parameter phi is different in the files from 
the value used by R&E. Please use the value (0.2) given in the programs. 

Both the computations and the writeup must be your individual effort. 

Specific Project Steps 

The project has four parts. The first 6 steps are designed to make sure you can use Matlab for 
systems like this. Parts 7-9 illustrate the properties of MLE. Parts 10-12 illustrate properties of Hopf 
and saddle-node bifurcations. The remainder of the project studies a second model. 

1. An essential step in developing a model is working out a consistent set of units for the 
variables. Usually it is desirable to make the numerical values of variables of the order 1; that 
is, it is possible to specify currents in amps, but then the numbers will be very small, which 
can cause problems with the numerical algorithms (see question 4 below). In neuron models, 
it is usually better to specify currents in microAmps or nanoAmps or picoamps. The same 
thing goes for potentials (mV), time (mS), and impedances. You are not free to choose any 
set of units, however, in that the units must be consistent. Thus volts, amps, siemens 
(1/ohms), farads, and seconds are a consistent set of units. For example, Ohms law requires 
that current=conductance x voltage, and the units are designed so that amps=siemens x volts. 
If you change volts to mV, you must make corresponding changes in the other units so that 
Ohm’s law is still numerically true. 
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 R&E choose the following units: milliseconds, microamps/cm2, millivolts, microfarads/cm2, 
and millisiemens/cm2. Show that this is a consistent set of units. Typically in neuron models 
current and admittance values are expressed per unit area of membrane, sometimes using the 
capacitance of the cell (which is easy to measure) as a stand-in for its area (which is hard to 
measure), assuming that capacitance = 1 μFd/cm2 x area 

 Suppose that it had been desirable to specify conductance as microsiemens/cm2. Give a set of 
units consistent with µS/cm2 for conductance. Is your solution unique? 

2. The parameters in the mlesim.m file are set near the values for Fig. 7.1 in R&E. Find the 
equilibrium point for the system with this set of parameters (and with iext=0). You should 
come up with two different ways of doing this calculation (not counting looking at the 
caption of Fig. 7.1). Explain your methods. 

 Plot a basic phase-plane for the system with iext = 0. It will be useful to write a small 
program to plot the nullclines, find the equilibrium points, and compute the eigenvalues at 
the equilibrium points. In finding the equilibrium points and other parameters in this work, it 
is not sufficient to just read an approximate value off the screen. You should compute the 
values accurately.  

A useful Matlab plotting subroutine for phase plane analysis is quiver() which can be used to 
make an arrow plot of the local directions of flow (i.e. the vector [dV/dt, dW/dt]) in the phase 
plane. Be warned, however, that Matlab requires that the X and Y values given to this 
function must have similar magnitudes. If you place V (max value about 100) on one axis and 
W (max value about 1) on the other axis, it is necessary to multiply W by 100 to get a usable 
plot (i.e. plot V versus 100*W). 

In the following, when you make phase plane plots, it will usually be very helpful to your 
understanding to plot both trajectories and nullclines on the same plot.  

In the following, always run the model from its equilibrium point (i.e. set the initial values of 
V and W to their values at the equilibrium point) unless instructed to do otherwise. 
Remember that as you apply a steady-state (D.C.) current iext, the equilibrium point changes. 

3. Is the equilibrium point found in part 2 stable (with iext = 0)? Check this by computing the 
eigenvalues of the Jacobian of the system at the equilibrium point. Obtain the Jacobian in 
three ways: 1) The function mlodejac() will return the Jacobian; 2) The Matlab function 
numjac() will evaluate the Jacobian numerically using calls to mlode(); 3) Derive an 
expression for the Jacobian of the MLE by hand. Once you have the Jacobian, evaluate its 
eigenvalues by hand or using the Matlab eig function. 

NOTE: if you use the discussion on P. 259 of R&E to understand the eigenvalue 
computation, be warned that there is an error in Eqns. 7.13 and 7.14. What is the error? 

4. Explain why the default numerical tolerance values built into matlab (AbsTol=10-6 and 
RelTol=10-3) are reasonable for the MLE. Suppose you set the units for the voltage variable 
in the MLE to kV (kilovolts). This would be a stupid thing to do, but if you did it, how would 
you have to change the values of AbsTol and RelTol to get the same error control? 
Understanding this issue is essential for accurate use of the ODE solvers. 
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5. If you run the mlec routine exactly as it is distributed, you will get an action potential similar 
to the one in R&E Fig. 7.1 (but not exactly the same). The difference between the two is in 
the parameter φ  (0.02 here, 0.04 in R&E). Make a phase plane plot of your action potential 
(like Fig. 7.1B) and explain the difference in the shapes of your plot and the one in Fig. 7.1B, 
in terms of the effects of the parameter φ (this is a place where having the nullclines will be 
very helpful). Check your answer by making φ even smaller, say 0.01. Can the effects of φ 
be explained by changes in the nullclines or equilibrium point? 

6. Fig. 7.1 of R&E shows responses to brief current pulses. In fact, these simulations were 
probably done by setting the initial condition on V to some value more positive than the 
equilibrium point while keeping the initial condition on W at the equilibrium point. Show 
(with equations) that resetting the initial condition on V in this way is equivalent to applying 
an impulse of current at iext. That is, show that running the model with 

 V(0) = v1,      W(0) = w0,       and       iext (t)= 0  

 is the same as running it with 
 V(0) = v0 ,     W(0) = w0 ,     and     iext (t) = i0 δ(t )  

 where (v0, w0) is the equilibrium point and δ(t) is the Dirac delta. Derive an expression for v1 
in terms of v0, i0 and parameters of the model. 

7. Simulate depolarizing current pulses of various amplitudes by setting the voltage initial 
condition to a succession of values positive to the resting potential while starting W at the 
equilibrium point. Find depolarizations that are sufficient to produce action potentials. Plot 
phase-plane trajectories for values of initial depolarization that do and do not produce action 
potentials. Make sure iext=0 for this part and make sure that the stopping time is large enough 
to see the whole action potential (300 ms or so). 

 Action potentials are usually thought to have thresholds. Does the MLE with the parameters 
of Fig. 7.1 have a threshold depolarization? If your answer is yes, define what you mean by 
threshold. Be careful here, you should investigate values of v1 between –14.9 and –15 mV 
carefully, i.e. to several decimal places; it will be useful to make a plot of the maximum 
amplitude of the action potential versus v1. 

8. Run the model with iext=86 µA/cm2 with three sets of initial conditions: 1) Set the initial 
conditions to the equilibrium point used above, appropriate for iext=0; 2) Set the initial 
conditions to the equilibrium point when iext=86 µA/cm2; and 3) Set the initial conditions off 
the equilibrium point for iext=86 µA/cm2, say at (-27.9, 0.17). Make sure you set the time span 
for the simulation to be long enough to see the full response. Make sure φ=0.02 for this part. 
If you want to use φ=0.04, then use iext=90. Plot the three trajectories on a phase plane. 
Describe the stable states of this system (make sure to characterize the equilibrium point for 
iext=86 µA/cm2 with eigenvalues). 

 Explain the difference between trials 1) and 2) above. That is, describe two experiments in 
which current is applied to a cell to produce the responses you observed. Hint: the difference 
is in the waveforms of the applied current. Make sure you understand the difference. 
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9. The system with iext=86 µA/cm2 apparently has two stable states. Find the unstable periodic 
orbit (unstable limit cycle) that divides the phase plane into those initial conditions that 
converge to the equilibrium point and those that converge to the limit cycle. Do this by 
running the model backward in time (meaning that instead of solving  d


X dt =


F(

X) , 

simulate  d

X dt = −


F(

X) ) to find an unstable periodic orbit like the UPO in R&E Fig. 7.3A. 

Make sure you understand what  happens to 1) nullclines 2) equilibrium points and 3) stable 
and unstable solutions when the model is run backwards in time. 

 Show that the UPO is a true threshold in the sense that an infinitesimal change in the initial 
condition on V leads from a subthreshold waveform to an action potential. 

10. Analyze the equilibrium points for iext= 80, 86, and 90 µA/cm2 (with φ=0.02) and show that a 
Hopf bifurcation occurs near here. Find the current at the bifurcation point. Consider the 
oscillating waveform near the bifurcation point. Does it correspond to that predicted by the 
eigenvalues of the system linearized around the equilibrium point for iext=86 (do this 
quantitatively, don’t just answer “yes” or “no”.)? 

 Make a plot of the rate of firing action potentials versus the applied current over the range 
80-100 µA/cm2. In each case, start the system at its equilibrium point for the applied current , 
so the bifurcation is clear in the plot (i.e. the transition from 0 rate below the bifurcation 
point to a non-zero rate above the bifurcation). 

11. Set your MLE program to the parameters of Figure 7.4 in the R&E chapter: 

%   gca, gk, gl,vca,  vk,  vl,  phi,    v1,  v2, v3, v4,  v5, v6, C, vic,wic 
pml=[4, 8.0, 2, 120, -84, -60, 0.0667, -1.2, 18, 12, 17.4 12,17.4,20, 0, 0]'; 
iext = [30., -1, 2000]'; 

 Note that the current should be set to a non-zero value. Determine the equilbrium point(s) of 
this system (there should be 3) and characterize them as to stability. Show, in a phase plane 
plot, the nullclines, equilibrium points, and manifolds (if there are any) for iext = 30. 

12. Do a  bifurcation analysis of this system in the current range between 30 and 50  µA/cm2. Pay 
special attention to the range between 39 and 40. Show that a bifurcation occurs here and tell 
what kind it is (in terms of the names introduced in class). It will be necessary to show what 
happens to the equilibrium points as the current increases. 

 Make a plot of the rate of firing action potentials versus the applied current over the range 
30-45 µA/cm2 and show how the behavior of this bifurcation is different from that of the 
Hopf bifurcation in part 10.  

 The squid giant axon behaves like the bifurcation in 10, but most neurons behave more like 
the bifurcation in 12 (even though the systems are different, more complex in the neurons).  

13. Appendix 2 contains equations for the classical HH model of the squid giant axon from their 
original paper. The model consists of a membrane capacitance C, a sodium channel GNa, a 
delayed-rectifier potassium channel GK, and a leak channel GL. The equation for membrane 
potential can be written as 
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 C
dV
dt

= Iext −GK (V − EK ) −GNa (V − ENa ) −GL (V − EL )  

 where Iext is externally applied current. The conductances are represented in terms of the HH 
parameters as: 

 GK = GKn
4 (V ,t) GNa = GNam

3(V ,t) h(V ,t) GL = GL  

and each of the three conductance parameters is governed by a differential equation of the form 

 dx
dt

= α x (V ) (1− x) − βx (V ) x  

 where x = n, m, or h. The functions αx and βx are rate constants and are given in the 
Appendix 2, along with the parameters of the model. 

 The parameter φ is an adjustment for the effect of temperature on the rate constants of the 
model. We assume that φ increases with temperature with a Q10 of 3, that is 

 φ =Q(T −6.3)/10   

 where T is the temperature of the simulation. For the purposes of this project, use T=6.3˚, so 
that φ=1 (i.e. ignore φ) 

 Write a program to simulate this system of equations. In doing so, take care with the 
equations for αn and αm whose denominator and numerator are both 0 for certain values of 
V, giving a 0/0 situation. Matlab will not handle this calculation properly; in order to prevent 
disaster, you should compute these parameters in a conditional way: 

If abs(V+50)>=1.e-4 
 alphan = -phi*0.01*(V+50)/exp(-(V+50)/10) – 1) 
else 
 alphan = phi*0.1/(1.-(V+50)/20) 
end 

 where a Taylor's expansion of the denominator has been used to calculate alphan near the 
singularity. 

 BE CAREFUL ABOUT THE UNITS OF THE HH EQUATIONS. NO ATTEMPT HAS 
BEEN MADE TO PROVIDE A CONSISTENT SET OF UNITS; IF YOU JUST PLUG IN 
THE NUMBERS IN THE APPENDIX, YOU MAY GET RIDICULOUS ANSWERS. 

13. Once you have the model running, determine the value of EL necessary to make the resting 
potential of the model -60 mV (trial and error is good enough here). Fix EL at this value for 
the rest of the project. It is prudent to use the stiff integration algorithms such as ode15s to 
avoid instabilities with this model. Make sure you have the numerical error tolerances set 
properly (as in question 4 above). You should be able to produce action potentials with 
Iext=10 µA/cm2. It will be handy to write a small routine to find equilibrium points here. See 
Appendix 4. 
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14. Check the stability of the model at rest with iext=0 (this will require computing the 
eigenvalues there). Determine the threshold of the model for brief current pulses, 
approximating them with depolarizations, as in part 6 above (express the threshold in terms 
of the depolarization threshold). Think carefully about how to realize this condition. 
Compare the result with those in HH Fig. 12, which is attached in Appendix 3. Bear in mind 
that Hodgkin and Huxley measured membrane potential relative to resting potential, so that 
the potential V used in this project is related to their membrane potential VHH as V=-VHH - 
60. 

15. Add a steady applied current (like iext in the MLE model) to your model. The model will 
undergo a bifurcation for steady applied current somewhere in the range between 9 µA/cm2 
and 11 µA/cm2. Find this bifurcation point and tell what kind of bifurcation it is. Be careful 
here. Near the bifurcation point, the model is bistable with the equilibrium point at the resting 
potential coexisting with a stable limit cycle (i.e. like Fig. 7.3 of R&E). Show the bistability. 
Thus, when testing for stability, it is not sufficient to simply start the model at some initial 
condition and then look for a decay into a stable equilibrium point (as a hint, the equilibrium 
point is stable at 9 µA/cm2 but the model goes into a limit cycle when started at an initial 
condition equal to the equilibrium point for zero current, determined above). Thus the 
equilibrium point will have to be determined by explicitly finding where   

� 

! 
F (
! 
X ) = 0. 

16. A contribution of the HH model was explaining the phenomenon of anode break excitation, 
wherein the membrane produces an action potential at the end of a hyperpolarizing stimulus 
pulse (see HH’s Fig. 22 in Appendix 3). Show that your model demonstrates anode break 
excitation (a hyperpolarizing current of -3 µA/cm2 for 20 ms should be sufficient). Analyze 
the parameters of the HH model and explain qualitatively why anode break excitation occurs; 
to do this, consider the effect of the hyperpolarization on m, n, and h. 

17. An instructive way to think about anode-break is to consider a reduced HH model system 
with only the V and m state variables. The n and h variables are fixed at some appropriate 
value, under the assumption that the time constants of m and V are fast compared to those of 
n and h, so that threshold can be studied using a system consisting only of the first two 
variables. Sketch a phase plane for m and V defined by the usual equations except that n and 
h are fixed at two values: 1) the values for membrane potential at the rest state, -60 mV and 
2) the values taken at the end of the anodal stimulus used to produce anode break excitation 
above. Characterize the equilibrium points in both cases. The phase plane should contain an 
equilibrium point near the rest potential in one case but not in the other. What happens to the 
resting equilibrium point in case 2) and what does this have to do with the anode-break 
spike? (see R. Fitzhugh, Thresholds and plateaus in the Hodgkin-Huxley nerve equation. J. 
Gen. Physiol. 43:867-896 (1960) for more details.) 

18. Another instructive simplification of the HH equations is to reduce them to a two-
dimensional system with V and n as state variables. m is eliminated by assuming that 
m=m∞(V) and h is eliminated by making it a static function of n. To see how this is possible, 
make a plot of n versus h for the two time series resulting from a simulation of an action 
potential. That is, call the function  plot(yv(:,2), yv(:,4))  where yv is the matrix of 
state variables resulting from a simulation of an action potential (e.g. [tim, yv] = 
ode15s('hhode', tspan, yv0) ), hhode is your ODE file containing the HH equations. It 
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is assumed that yv has n in column 2 and h in column 4. The plot will show that n and h are 
approximately linearly related, so that h can be computed approximately from n using a 
simple linear function like h=A+Bn, for suitable constants A and B. 

 Determine the constants A and B from your plot, perhaps by finding a line that best fits your 
plot in the least-squares sense. Write another ODE file that simulates the differential 
equations describing this reduced system: 

 

� 

C dV
dt

= Iext −GNa m∞
3 (V ) A − Bn( ) V − ENa( ) −GK n

4 V − EK( ) −Gleak V − Eleak( )

dn
dt

= n∞(V ) − n
τ n (V )

 

19. Compare the action potentials produced by the reduced system to those produced by the 
full HH system. Describe the differences qualitatively. Why do you think there are 
differences? Compare the threshold for spike initiation and the bifurcation behavior with 
steady current (#15 above). Show that the reduced system shows anode-break behavior 
very similar to that of the full HH system.  

20. Make a phase plane for the reduced system, using the values of A and B from question 18. 
Show the nullclines and equilibrium points (be careful in computing the dV/dt=0 nullcline, 
it’s a bit tricky). Depending on exactly which values you use for A and B, your phase plane 
will have one or three equilibrium points. Characterize all the equilibrium points and show 
the manifolds of any saddle nodes. Also show trajectories on the phase plane from the 
following two initial values (with Iext=0!): 

 1:  V(0) = -63 mV, n(0) = 0.27  (the values at the end of the –3 µA anodal stimulus) 

 2:  V(0) = -60 mV, n(0) = 0.32 (the usual resting potential values) 

 You should observe an action potential in one case (corresponding to the anode-break 
spike) and no action potential in the other. 

21. If your reduced system has three equilibrium points, then one of the manifolds of the saddle 
node should provide an explanation for the anode-break behavior. Write a brief explanation 
of how the anode-break behavior comes about, basing your argument on the position of this 
manifold. If your system has only one equilibrium point, it will behave similarly, but there 
will be no manifold. Even though the manifold is not explicitly present, the behavior of the 
system is similar, so the manifold provides a rough explanation. To see the manifold, use 
A=0.97 and B=-1.05. 

. 
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Appendix 1: Matlab files for MLE 

 
% MLESIM - simulate Morris-Lecar equations 
% Needs a column vector pml of params: 
%    pml=[gca, gk, gl, vca, vk, vl, phi, v1, v2, v3, v4, v5, v6, C, vic, wic]' 
% For meaning of parameters, see Rinzel and Ermentrout. 
% and a column vector iext describing the external current 
%   iext = [iampl, tstart, tstop]' 
% which are the current amplitude and the start and stop times. 
% These are set up internally to the values for Fig. 7.1 of R&E if not supplied 
% in the workspace. 
% This always runs with i.c.s set to 0, just to give a spike. 
  
% Parameters for Fig. 7.1. NOTE initial conditions are not included. 
% NOTE VALUE OF phi CHANGED FROM FIG. 7.1 VALUE. 
%    gca, gk, gl, vca,  vk,  vl,  phi,  v1,  v2,v3, v4,v5, v6, C,junk,junk 
pml=[4.4, 8.0, 2, 120, -84, -60, 0.02, -1.2, 18, 2, 30, 2, 30, 20, 0,  0]'; 
     
% External current parameters. 
%     iext tstart tstop 
iext = [0,   0,    0]'; 
  
figure(1); clf   % Shouldn't be necessary but prevents an annoying bug 
                 % in odeplot 
                  
% Store parameters for mlode: 
setmleparms(pml, iext); 
  
% Simulate for 100 ms from 0 initial conditions (should produce an AP) 
tspan = [0; 100]; 
y0 = [0; 0]; 
  
% Show the state variables during the simulation, tell solver where to get 
% the Jacobian. 
options = odeset('OutputFcn', @odeplot, 'Jacobian', @mlodejac, ... 
                    'Vectorized', 'on'); 
%options = odeset('Jacobian', @mlodejac, 'Vectorized', 'on'); 
  
% Do the simulation 
[t,y] = ode15s(@mlode, tspan, y0, options); 
  
% Print final value of state variables 
current = y(end,:); fprintf('Final values: v=%g,  w=%g\n',current); 
  
% Replot the state variables so the W variable can be seen 
[ax, h1, h2] = plotyy(t, y(:,1), t, y(:,2)); 
axes(ax(1)); ylabel('V, mV.') 
axes(ax(2)); ylabel('W') 
xlabel('Time, ms.'); 
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function setmleparms(pml, iext) 
  
% Sets current values of MLE parameters. Call as 
%       call setmleparms(pml, iext) 
% This stores the parameters in an internal store from which they can be 
% fetched by getmleparms. This is how mlode gets its parameters. 
% pml is a column vector of params 
%    pml=[gca, gk, gl, vca, vk, vl, phi, v1, v2, v3, v4, v5, v6 C vic wic]' 
% and iext is a column vector describing the external current 
%   iext = [iampl, tstart, tstop]' 
  
global PMLXYZ IEXTXYZ 
  
PMLXYZ = pml; 
IEXTXYZ = iext; 
  
return 
 
 
 
function [pml,iext] = getmleparms 
  
% Returns values of MLE parameters stored in internal store by setmleparms. 
% Call as 
%        [pml,iext] = getmleparms 
% User should set parameters to be used by mlode with setmleparms. This routine 
% is used by mlode to read the current parameter vector. 
% pml is a column vector of params 
%    pml=[gca, gk, gl, vca, vk, vl, phi, v1, v2, v3, v4, v5, v6 C vic wic]' 
% and iext is a column vector describing the external current 
%   iext = [iampl, tstart, tstop]' 
  
global PMLXYZ IEXTXYZ 
  
pml = PMLXYZ; 
iext = IEXTXYZ; 
  
return 
 
 
 
function ydot = mlode(t, y) 
  
% MLODE - ODE file for the Morris-Lecar Equations. 
% Evaluates the derivative of the state vector for the Morris-Lecar 
% equations with parameters pml, where pml is a column vector of params 
%    pml=[gca, gk, gl, vca, vk, vl, phi, v1, v2, v3, v4, v5, v6 C vic wic]' 
% and iext is a column vector describing the external current 
%   iext = [iampl, tstart, tstop]' 
% v5=v3 and v6=v4 are for tauw(). 
% Parameters are set through function SETMLEPARMS() only. mlode reads 
% the parameters using GETMLEPARMS. 
%       ydot = mlode(t,y);     returns dy/dt eval at t,y 
% Note, also available: 
%       jac = mlodejac(t,y)    returns the Jacobian at t,y 
% Note mlode is vectorized, but mlodejac is not. 
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% Get parameters 
    [pml,iext] = getmleparms; 
     
% Compute  
    ydot = zeros(2,1); 
    if t>=iext(2) & t<iext(3) 
       ydot(1) = (iext(1) - pml(1)*minf(y(1),pml).*(y(1)-pml(4)) - ... 
           pml(2)*y(2).*(y(1)-pml(5)) - pml(3)*(y(1)-pml(6)))/pml(14); 
    else 
       ydot(1) = (-pml(1)*minf(y(1),pml).*(y(1)-pml(4)) - ... 
           pml(2)*y(2).*(y(1)-pml(5)) - pml(3)*(y(1)-pml(6)))/pml(14); 
    end 
    ydot(2) = pml(7)*(winf(y(1),pml)-y(2))./tauw(y(1),pml); 
return 
 
 
 
 
function jac = mlodejac(t,y) 
  
% MLODEJAC - computes Jacobian for MLE system. 
% To get the Jacobian, proceed in one of the two ways: 
% 1. t = 0; y = [state vector at the eq. pt. where the jacobian is desired]; 
%    setmleparms(pml, iext)     % Set parameters of MLE model 
%    jac = mlodejac(t, y)       % Returns the jacobian 
% 
% 2. t = 0; y = [state vector]; fac = []; 
%    setmleparms(pml, iext) 
%    [jacn,fac]=numjac(@mlode, t, y, mlode(t,y), [1e-5;1e-5],fac,0) 
  
% Parameter vector: 
%          1    2   3   4    5   6   7    8   9  10  11  12  13  14 15   16 
%    pml=[gca, gk, gl, vca, vk, vl, phi, v1, v2, v3, v4, v5, v6, C, vic, wic]' 
% Get parameters: 
    [pml,iext] = getmleparms; 
     
% Compute Jacobian 
    jac = zeros(2,2); 
    jac(1,1) = (-pml(1)*0.5/(pml(9)*cosh((y(1)-pml(8))/pml(9))^2)*(y(1)-pml(4)) 
- ... 
           pml(1)*minf(y(1),pml) - pml(2)*y(2) - pml(3))/pml(14); 
    jac(1,2) = -pml(2)*(y(1)-pml(5))/pml(14); 
    jac(2,1) = pml(7)*(0.5/ ... 
         (pml(11)*cosh((y(1)-pml(10))/pml(11))^2*tauw(y(1),pml)) - ... 
         (winf(y(1),pml)-y(2))*sinh((y(1)-pml(12))/pml(13))/(2*pml(13))); 
    jac(2,2) = -pml(7)/tauw(y(1),pml); 
return 
 
 
 
 
function min = minf(v,pml) 
% MINF - compute m-infinity for the MLE. m = minf(v,pml) 
% where pml is the usual MLE parameter vector. v and m can be vectors. 
   min = 0.5*(1 + tanh((v-pml(8))/pml(9))); 
return 
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function win = winf(v,pml) 
% WINF - compute w-infinity in the MLE. 
%     w = winf(v,pml); 
% where v can be a vector and pml is the usual MLE parameter vector. 
   win = 0.5*(1 + tanh((v-pml(10))/pml(11))); 
return 
 
 
 
 
 
function tw = tauw(v,pml) 
% TAUW - compute time constant for dw/dt in the MLE. 
%    tau = tauw(v,pml); 
% tau and v can be vectors. 
   tw = 1./cosh((v-pml(12))/(2*pml(13))); 
return 
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APPENDIX 2: Hodgkin Huxley equations for a resting potential of -60 mV. 

Note: in all cases below, the units of the rate constants (αn, βn etc.) are /ms. 

For the delayed-rectifier potassium channel: 

GK = 36 mS/cm2        EK=-72 mV        αn = 
-0.01 φ (V+50)

exp -(V+50)/10  - 1
        βn = 0.125 φ exp -(V+60)/80  

 

For the sodium channel: 

GNa = 120 mS/cm2      ENa=55 mV       αm = 
-0.1 φ (V+35)

exp -(V+35)/10  - 1
           βm = 4 φ exp -(V+60)/18

αh = 0.07 φ exp -(V+60)/20       βh = 
φ

exp -(V+30)/10  + 1

 

For the leakage channel: 

 GL = 0.3 mS/cm2          EL = to be determined 

 

Temperature coefficient: 

 φ = Q(T-6.3)/10          Q = 3 

 

Membrane capacitance: 

 C = 1 µFd/cm2 
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Appendix 3: Figures from the HH (1952) paper 

The figures below are referred to in the text of the project assignment. 
 

 

Fig 12 from HH, 1952. Upper plot: 
simulations of action potentials from 
the HH model (at a temperature of 
6˚). Lower plot: action potentials 
recorded at 6˚ from a squid axon. The 
ordinate is membrane potential 
relative to resting potential with 
depolarization up. The numbers next 
to the curves are the depolarizations 
(mV) used to initiate the potentials. 

 

 

 

 

 

 

 

Fig. 22 from HH, 1952. Simulations (top) 
and actual data (bottom) for action 
potentials produced by anode-break 
excitation. Simulation done at 6˚, data taken 
at 18.5˚; the difference in the abscissa time 
scales reflects the effect of the temperature 
difference on the rate constants. Membrane 
potential was held hyperpolarized by 26.5 
mV for times <0 and then released by 
turning the current off. 
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Appendix 4: Finding zeros with a Newton method 

The problem is to find where   

� 

 
F (
 
X ) = 0, where   

� 

 
F  is a vector-valued function of a vector 

  

� 

 
X of variables (both N-dimensional). For this project,   

� 

 
F  is the set of functions defining the r.h.s. of 

the differential equations being simulated (as defined in your ODE file) and   

� 

 
X  is the state vector. 

Suppose there is a starting condition   

� 

 
X 0 and we want to move to a value   

� 

 
X Z  where   

� 

 
F (
 
X Z ) = 0 to a 

good approximation. This can be done in steps using a Newton method. Consider a first-order 
approximation of a step from   

� 

 
X  to   

� 

 
X + d

 
X : 

   

� 

 
F (
 
X + d

 
X ) ≈

 
F (
 
X ) + Jd

 
X  

where J is the Jacobian of   

� 

 
F  with respect to   

� 

 
X . Now if we want   

� 

 
F (
 
X + d

 
X )  to be zero, then 

   

� 

 
F (
 
X ) + Jd

 
X = 0     or     d

 
X = −J−1

 
F (
 
X ) 

and   

� 

 
X 1 =

 
X 0 + d

 
X  should be closer to the zero of   

� 

 
F . This process can be iterated until   

� 

d
 
X  is smaller 

than a preset tolerance or until   

� 

 
F (
 
X )  is sufficiently close to zero. 

To do the calculations in Matlab, numjac() can be used to compute the Jacobian of your 
ODE file and the \ function (see “help mldivide”) can be used to compute   

� 

d
 
X . 

 


