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Problem 1 

Part a) At equilibrium the sum of the electrochemical potentials of the two transported 
molecules must be zero. Assuming there is no contribution to free energy from terms other than 
concentration and electrical potential: 

 

RT lnHout + FVout + RT lnXout = RT lnHin + FVin + RT lnXin

F(Vin −Vout ) = RT ln
Hout Xout

HinXin

  

In a flux equation, this condition should appear as a difference in thermodynamic driving forces. 

 Jin = (other terms) Hout Xout − HinXine
F (Vin−Vout )/RT⎡⎣ ⎤⎦   

Part b)  Equilibrium requires that the electrochemical potential of the three species are equal.  
  µA = GA + RT lnA + zAFVA = µB =! for B= µC =! for C  , 

where GA, GB, and GC are effects other than concentration and electrical potentials (as represented in 
a barrier diagram). 

In steady state the flow of the reaction is such that the concentrations A, B, and C are constant. 
If something maintains A and C (e.g. the usual assumption at the boundary of a membrane that there 
is a large pool of substance), then the fluxes must be equal, i.e. 
 JA→B = k1A − k−1B = JB→C = k2B − k−2C  . 
If there is a fixed total amount of A, B, and C then fluxes must be zero at steady state (equilibrium). 

Problem 2 

Part a) The three state variables are m the gating variable for the calcium channels, Ca the 
calcium concentration in the pool near the channels, and CaCh the inactivated calcium channels. The 
following would be sufficient. 

 

dm
dt

= m∞(V )−m
τ m (V )

dCa
dt

= 1
Vol

− ICa
2F

− PCa⎛
⎝⎜

⎞
⎠⎟      where     ICa = GCam F(Ca,V )

dCaCh
dt

= k1 ⋅Ca ⋅Ch − k−1 ⋅CaCh

  

F(Ca,V) is whatever current-voltage relationship is assumed for the open Ca channels, the GHK 
equation or a linear equation or some other. There could be additional terms in the dCa/dt equation 
modeling the geometry of the Ca space, but for this simple model, they are not necessary. 

Part b)  This is just substitution for V fixed at VCl, using the condition that d( )/dt = 0. 



 mss = m∞(V ),    Cass = −GCamssF(Ca,VCl )
2FP

 ,   CaChss =
k1Ca T
k1Ca + k−1

  

Part c)  Question (1):  The purple trace is at the resting potential and the Ca channels are not 
open or are minimally open, so no Ca current is seen during the conditioning pulse. Remember this 
is an L-type Ca channel, which is a high-threshold version. For the green curve there is substantial 
current, as shown in the response to the conditioning pulse, but no inactivation. This suggests that 
there is no calcium current there. +70 mV is high enough that the current through the channel is 
likely to be leakage of potassium. 

 Question (2): apparently CaCh is staying high between the pulses, i.e. the time constant of 
decay of CaCh is such that it does not decay much from the end of the conditioning to the beginning 
of the test. This could be for one of two reasons: first, the time constant of CaCh itself could be long 
or second, the time constant for Ca could be long, keeping Ca elevated between the pulses and 
holding CaCh elevated, regardless of its time constant. Without further data, one cannot tell. 

Problem 3 

Part a)  The differential equations are unique only to the extent of a multiplier, which can be 
a constant or a function of the state variables, as long as it doesn’t go to zero and thereby affect the 
nullcllines. The simplest systems consistent with the hint and the nullclines are 

 

dX
dt

= −Y + a − X(X −1)(X +1)

dY
dt

= −φ Y − bX − a( )
  

Note the hint is ambiguous regarding whether φ multiplies only Y or the whole r.h.s. of the 
differential equation.  

Part b)  The Jacobian is 

 J =
−3X 2 +1 −1

bφ −φ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
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  at the equilibrium point:  J =
1 −1

bφ −φ
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  , 

so the characteristic equation is 

 
(λ −1)(λ +φ)+ bφ = 0

λ 2 + (φ −1)λ − (1− b)φ = 0
  , 

with solutions 

 λ = 1−φ
2

± (1−φ)2 + 4(1− b)φ
4

= 1−φ
2

1± 1+ (1− b)φ
(1−φ)2

⎡

⎣
⎢

⎤

⎦
⎥   . 



The value under the radical is larger than 1 (since b<1 and φ>0), so the resulting eigenvalues are a 
pair with positive and negative values. Thus the equilibrium point at X=0 is a saddle. The solution is 
slightly messier if φ doesn’t multiply b. 

Part c)  The low-temperature limit cycle would 
have to crawl along the nullclines, but in doing so it 
would have to pass the two equilibrium points at ±0.8. 
Because these are stable, they would capture any such 
trajectory. The example at right shows a phase plane for 
φ=0.2. The majenta curves are trajectories that show the 
low-temperature behavior, including nullcline-crawling. 
The are captured by the stable equilibrium points as 
expected.  

Part d)  The modified Jacobian is 

 

J =
3X 2 −1 1

bφ −φ
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  at the equilibrium point:  J =
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and the eigenvalues are 

 λ = −1+φ
2

1± 1− φ(1− b)
(1+φ)2

⎡

⎣
⎢

⎤

⎦
⎥   

The value under the radical is positive, real, and less than one (as long as φ>0 and 0<b<1), so the 
eigenvalues are real and negative and the equilibrium point is stable. It turns out that the equilibrium 
points at ±0.8 are saddles in this case. 

 

 


