
580.439/639 Midterm Exam, 2014 

Do all problems. 1 hour, closed book except for a 1-page help sheet. You can choose not to answer 
any two questions, but make that clear on your paper (i.e. which two). It’s always unwise to skip the 
first or second part of a multi-part problem. All parts have equal value (14 points plus 2 for your 
name). 

Problem 1 (One or two sentences is sufficient for each of these.) 

Part a)  A transporter model moves one hydrogen ion (H+) and one neutral molecule X into 
the cell in a coupled fashion. What term does the overall flux equation of a model of this system 
need to contain in order to properly model zero flux at equilibrium? 

Part b) Consider a system in which a reaction like that below occurs 

 
 
A k1

k−1
! ⇀!!↽ !!! B k2

k−2
! ⇀!!↽ !!! C   

Give a condition that is sufficient to specify that A, B, and C are at equilibrium, or a definition of 
equilibrium for this system, and a second for steady state.  

Problem 2 

L-type calcium channels show Ca++-dependent 
inactivation, but no voltage-dependent inactivation. In Ca 
inactivation, the ICa  through the channel provides calcium 
ions that bind to the channel on the interior of the membrane, 
partially inactivating it. An example is provided in the figure 
at right. A depolarizing voltage clamp (VCl ) is applied to a 
membrane containing Ca++ channels. When Ca++  is carrying 
the current (black trace), the response is a significant inward 
current that partially inactivates (decreases with time). As 
evidence, when Ba++ replaces Ca++ in the extracellular space, there is still a current (green trace) 
because Ba++ is permeable through Ca++ channels, but no inactivation because Ba++ doesn’t bind to 
the inactivation system. 

Part a)  Write down the equations of an approximate model for this process containing the 
elements listed below. Note that this is a voltage clamp, so V is fixed as drawn above, and appears in 
the equations as a constant parameter, not a state variable. 
1) Membrane depolarization opens activation gates in the Ca++ channels, admitting a Ca++ current. 
2) Ca++ accumulates in a certain volume Vol near the channels on the inside of the membrane. 

Ca++ escapes from this volume via diffusion at a rate p ⋅Ca . 

3) The Ca++ binds to the channel according to the reaction  
 
Ca +Ch k1

k−1
! ⇀!!↽ !!! CaCh  where Ch is 

unbound channel and CaCh is bound channel. The channel in state Ch is non-inactivated 
whereas the channel in state CaCh is inactivated. 

You will need three differential equations, one for each of three state variables. 
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Part b)  When VCl is fixed at some interesting potential and the system of part a) comes to an 
equilibrium point, what are the values of the state variables at this point? 

Part c)  Consider the experiment in the figure at right, taken from Budde et al. Nature Rev. 
Neurosci. 3:873 (2002). A conditioning voltage clamp to one of three three voltages (-50 mV purple, 
+10 mV red, or +70 mV green) is followed by a test voltage clamp to +10 mV (which normally 
gives the largest ICa). Calcium inactivation is seen in the red trace during both the conditioning pulse 
(at V=+10 mV) where current declines with time, and during the test pulse where the current is fully 
inactivated at the beginning and shows no further decline. By contrast, the purple and green traces 
show no sign of inactivation during the conditioning pulse, but still show full inactivation during the 
test pulse. Answer the following questions: 

1) Why is there no inactivation during 
conditioning in response to the green and 
purple traces? For each condition, tell 
which state variable from your model 
produces the effect, inactivation or no 
inactivation? (Hint, look at the signs and 
amplitudes of the currents in response to 
the conditioning). 

2) Which state variable provides the memory 
of the conditioning from the first to the 
second pulse? Justify you answer (if you 
can; you may not be able to guess). 

 

Problem 3 

Consider the system with the phase plane 
drawn at right for a system with state variables X and Y 
(similar in shape to a MLE or HH phase plane with X 
playing the role of membrane voltage and Y playing 
the role of a HH gating variable). The phase plane 
shows the nullclines  which are given by the equations: 

 
YX = a − X(X −1)(X +1)

YY = bX + a
   , 

where YX  is the nullcline for dX/dt = 0 and YY is the 
nullcline for dY/dt = 0. The values of the parameters 
and the equilibrium points are marked on the graph. 
For this, assume a and b are as given on the plot. 

Part a)  Write a set of differential equations whose phase plane looks like the one above. 
There is not a unique way to do this for two (and more) reasons: (1) The phase plane is not sensitive 
to the sign of the r.h.s. of the differential equations; (2) One or both equations can be multiplied by a 
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constant (like the “temperature” parameter discussed in class) without changing the phase plane. To 
eliminate the ambiguity, write the equations so that they contain a term in Y as below: 

 
 

dX
dt

= −Y +!     and     dY
dt

= −φY +!    , 

where φ > 0. 

 Part b)  So far, a system with three equilibrium points like the one drawn above always has 
always had a saddle node as the middle point (the one at X=0). Show that the middle equilibrium 
point in the system above is always a saddle for the constraints of part a), regardless of φ. 

Part c)  Often a system like this one has a low temperature limit cycle when φ is very small. 
Argue that the locations of the equilibrium points at X = -0.8 and +0.8 do not allow such a limit 
cycle. Although you haven’t proven it, you can easily show that both equilibrium points are stable 
for the parameters above, which is necessary for your argument. 

Part d)  Suppose the constraints of part a) are changed to reverse the sign of the r.h.s. of the 
equation for dX/dt.  

 
 

dX
dt

= +Y +!     and     dY
dt

= −φY +!   

Show that the middle equilibrium point is now always stable. 

 

 

 

 


