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Question 1 

Part a) Equating the electrochemical potentials of H+ and X on outside and inside: 

 

RT lnHout + zF 0 + RT lnXout = RT lnHin − F 60 + RT lnXin

60 mV = RT
F

ln Xin

Xout

= 26 mVln Xin

1 µM
     ⇒     Xin = 10 µM

  

Part b) In this case the terms in zFV disappear from the electrochemical potential and there 
is no driving force except the concentration of H+ which is the same on both sides. Thus Xin = 1 μM 

Question 2 

Part a) Equating electrochemical potentials at equilibrium between the closed and open 
states in the barrier model gives 

 

RT ln(1− n)+GC + zGFV = RT ln(n)

RT ln n
1− n

= GC + zGFV

n = 1
1+ e−(GC+zGFV )/RT

  

With some algebra, this equation is the same as the value of n∞(V) from the differential equation 
(given in the problem question). 

 Thus, at equilibrium n=n∞. 

Part b) The differential equation is 

 dn
dt

= n∞(V )− n
τ n (V )

  

In the steady state, dn/dt = 0, so n=n∞, the same as for equilibrium.  

Part c)  The conditions for equilibrium and steady state, derived by (1) equating 
electrochemical potentials of S1 and S2 for equilibrium and (2) using d( )/dt=0 for steady state are 
below. 

 Equilib:  V = GC

zF
+ RT
zF

ln S1

S2

     Steady state:  Flux over the barrier = constant   

 The difference between the gate model and the S1/S2 flux model is in the assumptions. In the gating 
model, there is a fixed total amount of gates, so a steady state of non-zero flux is not possible and the 
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only possible steady state is zero flux at equilibrium. In an independence-regime flux model, we 
assume there are concentrations S1 and S2 of solute on the two sides of the model. These are assumed 
to be held constant by some unstated mechanism (like large volume pools) despite a non-zero flux 
through the model. In this case, the steady state is different from equilibrium (although equilibrium 
is still a steady state). 

Question 3 

Part a) Na currents are inward (negative), so loss of Na currents would make the currents 
larger, not smaller as in the middle plot. The currents in the middle plot must be K currents and they 
get smaller when TTX is applied. K channels are not blocked by TTX, so the decrease in K currents 
must be due to loss of Na currents, consistent with a KNa channel. 

Part b) The large inward currents are transient, i.e. inactivating, Na channels of the HH type. 
They are missing in the middle plot because TTX blocks them. 

Part c) At the membrane potentials used here (-90 to +40 mV), sodium currents are inward 
(negative). Thus the outward currents in both middle and bottom plot are potassium currents. In the 
bottom plot, they must be currents through the KNa channels mostly, because they are sodium 
dependent (blocked by TTX). In the middle plot, they are all the other potassium channels, such as 
voltage gated K channels. If the KNa channels are also voltage-gated, then some of the K currents in 
the middle plot might be Na. 

Part d) Based on the duration of the K currents, persistent Na channels are most likely. The 
alternative is that the transient currents admit sodium which is pumped out very slowly. That seems 
unlikely given the steady nature of the potassium currents and the speed with which the currents turn 
off at the end of the voltage clamp. It must be that Na is pumped out rapidly, and a constant flux of 
sodium is needed to keep the KNa  channels open. 

Part e) Veratridine application should increase the persistent sodium and the KNa current, if 
the latter depends on the persistent sodium. 

Question 4 

Part a) There is an unstable limit 
cycle surrounding the equilibrium point that 
serves as the inner boundary for the required 
region R. The outer boundary is provided by 
a rectangle with top and bottom at w=0 and 1 
and left and right boundary outside the 
lowest and highest equilibrium potential. 

Part b)  The phase plane is shown at 
right. The presence of a limit cycle 
surrounding the unstable equilibrium point 
can be inferred by index theory and the PB 
theorem. The limit cycle is shown, as is the 
trajectory from the point X. At right these 
features are computed, but they can be 
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inferred approximately from the necessary condition of index theory, the arrows provided in the 
problem statement and the low-temperature assumption. The flows in the lower left part of the phase 
plane can also be inferred from the locations of the nullclines. A trajectory near X cannot cross the V 
nullcline because there is no horizontal trajectory there. Instead trajectories are dominated by dn/dt 
near the X. 

Question 5 

Part a)  The cable equation with current injection as its input is linear. Real dendritic trees 
are nonlinear in the following ways. Each was discussed in class.  

1. The inputs are conductances, not currents, producing nonlinear interactions among inputs, 
especially saturation as the input conductance increases. 

2. Dendrites contain voltage-gated channels (including NMDA channels), so the membrane 
currents are not linear, as assumed in the cable equation. This leads to saturation due to K currents or 
active processes (action potentials) due to Na and Ca channels.  

3. A corollary of #2 is that action potentials can propagate in the forward or backward 
direction in dendrites. 

4. A corollary of #1 and #2 is that summation of inputs is strongest with small inputs spread 
throughout the tree in a linear dendritic tree but strongest with concentrated inputs, capable of 
evoking action potentials, in a dendritic tree with voltage-gated channels.  

5. A corollary of #1 is that the interaction of excitatory and inhibitory synapses are non-linear, 
as in shunting inhibition. 

Part b)  Activating synapses adds conductance to the membrane, decreasing the effective (or 
average) value of Rm, the membrane resistance. This has the following effects on parameters of the 
cable equation: 

 λ = Rma
Ri2

  decreases,  τ m = RmC   decreases,  G∞ = 2
RmRi

πa3 2   increases   

Because of the effect on λ, the electrotonic length from soma to synapses is expected to increase; 
because of the effect on τm the low-pass frequency cutoff of the dendrites is expected to increase; and 
the increase in Gm should increase the input conductances (i.e. the admittance at zero frequency) in 
the tree.  

The effect on voltage gain and other transfer functions is complex because of competing 
changes. For voltage gain, 

 AsynS =
1

coshqL + YL
G∞q

sinhqL
  

The term YL/G∞q should vary approximately as tanh(qL), from the formula for input admittance of a 
cable, e.g. if terminated by a zero admittance, Yin = G∞q tanh(qL). Because q decreases (following 
the decrease in τm) while L increases (following the decrease in λ), it is not clear what happens to qL 
and therefore to the cosh, sinh and tanh terms in the equation above. At DC, however, q=1 and 
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doesn’t change with Rm, so the qL terms increase. In that case the denominator of AsynS should 
increase with Rm, meaning that AsynS should decrease, making the electrotonic size of the neuron 
larger (say by the MET measure). 

Part c)  Inhibition can work by shunting current from excitatory synapses before those 
currents reach the soma. For this to work, inhibitory synapses must be closer to the soma than the 
excitatory ones. 

Part d)  The MET defined as –lnA01 is used as a measure of the effective or functional 
electrotonic length of a dendritic tree between points 0 and 1. It can be computed from soma (0) to 
dendrites (1) or in the opposite direction.  The larger the MET, the smaller the voltage gain for 
propagation in the direction 0à1. Those calculations show that the MET is smaller for potentials 
propagating from soma to dendrites (backpropagation) than for the opposite. Thus backpropagating 
action potentials should be more robust than forward-propagating ones. 

Question 6 

Part a) For a single cylinder from 0 to 1, inject a current I0 that produces potential V0 and 
also potential V1: 

 

V1 = A01V0 = I0K01 =
V0K01

K00

     where V0 = K00I0

V0 = A10V1 = I1K10 =
V1K10

K11

     where V1 = K11I1

  

Combining these 

 

A01 = K01 K00      and     A10 = K10 K11     

so     A01

A10

= K11

K00

≠ 1
  

In the final equation, use has been make of the fact that K01 = K10.  

Part b) The bottom equation above gives the relationship of A01 and A10. They are not equal, 
because K11 is unlikely to be equal to K00, nor are they inverses. 

Question 7 

Part a)  The phase planes for the model are (1) and (1a). The other two, (2) and (2a)), are for 
a similar model with negative weights on the connections between the neurons, that is –E1 and –E2 in 
the arguments of F() in the differential equations. The trajectory directions are indicated below. The 
nullclines are given by 

 dE1 dt = 0    at     E1 = F(E2 + K )     and     dE2 dt = 0    at     E2 = F(E1 + K )   

The nullcline for dE2/dt=0 is just E2 = F(E1+K). For the dE1/dt=0 nullcline, it is useful to have the 
inverse function F-1(x), where x = F-1(F(x)). 
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 F−1(x) = 0.5 + K − 1
10
ln 1− x

x
⎛
⎝⎜

⎞
⎠⎟   

Then the nullcline is E2 = F-1(E1+K). 

 
Part b)  The Jacobian is the partial derivative of the rhs of the differential equations with 

respect to the state vector, giving 

 J =
−1 ′F (eq.pt.)

′F (eq.pt.) −1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

   where   ′F (eq.pt.) = 10e−10(x−0.5)

1+ e−10(x−0.5)( )2

eq.pt .

∂x
∂E eq.pt .

  

where x is the argument of F(x) so ∂x / ∂E = 1 . Because of the symmetry of this phase plane, the 
equilibrium points must by on the main diagonal (E1=E2), so J is symmetric on both diagonals. 

The symmetry of J leads to a simple form of the eigenvalues at equilibrium points; such 
eigenvalues must be λ = -1 ± a, where a = F’(eq.pt.). Thus they are stable nodes if |a|<1 and saddles 
if  |a|>1. 

At the three equilibrium points the Jacobians and eigenvalues are as follows: 

 

At (0,0) and (1,1):     J =
−1 −0.0665

−0.0665 −1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

     λ = −1.06, − 0.993

At (0.5,0.5):     J =
−1 −2.5

−2.5 −1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

     λ = −3.5,1.5
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So, the equilibrium points at (0,0) and (1,1) are stable and the one at (0.5,0.5) is a saddle. From the 
arrows in the phase plane, one can see that the unstable manifolds of the saddle lead to the stable 
equilibrium points and the stable manifolds enter the phase plane at upper left and lower right and 
terminate in the saddle. Thus, in the plane (1), the stable equilibrium points each are attracting for 
half the phase plane. The arrows also show that no trajectory can escape from the phase plane. 

Part c)  With an input K=0.2 the phase plane is (1a) with nullclines at the colored dashed 
lines. The gray lines are the nullclines from (1) for comparison. The movement of the nullclines 
along the axes can be inferred by adding K to the Ei in the differential equations. A saddle node 
bifurcation has occurred and the lower equilibrium point and saddle have merged and disappeared. 
The upper equilibrium point remains, 

 At (1,1) with K = 0.2 :      J =
−1 −0.0091

−0.0091 −1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

   λ = −1.009, − 0.991   

which is stable; from the arrows above, it is clear that all trajectories flow into the phase plane across 
its boundaries, so the equilibrium point is globally attracting. 

Part d)  The bifurcation diagram is shown below. 

 

For large negative or positive values of K only one stable equilibrium point exists and the system is 
attracted to it, as in part b) above. The system is stable in that state as K changes over (-0.181, 
0.181); at either endpoint of this domain, there is a saddle node bifurcation and the system switches 
to the other state. In this way, the network has memory for the recent history of K. 

 

 


