
580.439/639 Final 2014 

3 hours, closed book except for cheat sheet. Do all problems. 

Question 1 

Part a) (5 points) A transport mechanism moves an H+ ion and an uncharged molecule X 
through the membrane in a coupled fashion, i.e. H+-X moves through the membrane as a complex. 
Given that the cell’s membrane potential is -60 mV and the pH is 7 everywhere (inside and outside 
the cell), what is the equilibrium concentration of X inside the cell if the concentration outside is 1 
μM? 

Part b) (5 points) Same question, except X has a charge of –1, i.e. H+-X– moves through the 
membrane as a complex? 

Question 2 

Consider the Boltzmann model of the potassium 
channel n-gate that was studied in a homework problem. 
The model works out expressions for n∞(V) and τn(V ) 
based on a single barrier model, at right. Remember that n 
is the fraction of channels in the open state. The results are 
as follows: 

n∞(v) = 1
1+ e− zG v+vh( )           τ n (v) = 1

α eλ zGv 1+ e− zG v+vh( )⎡⎣ ⎤⎦
 

where     vh =
GC

zGRT
      α=ke–(G-GC )/RT       v= FV

RT  

and zG  is the charge on the gate. 

Part a) (10 points) Show starting with the energy diagram that, at equilibrium, n = n∞(V). 
That is show that the equation for n∞ derived from the differential equation for n is the same as the 
equilibrium distribution of channel in the open state. 

Part b) (10 points) Starting with the HH differential equation for dn/dt, what is the condition 
for a steady state of n? How does steady state differ from equilibrium here? If they do not differ, 
explain why. 

Part c) (15 points) If the single-barrier above were used to model flux through an ion 
channel in the independence regime (instead of gating of a channel), the model would be drawn in 
the same way, with “open” and “closed” replaced by S1 and S2 the concentrations of ion on the two 
sides of the membrane. Write the conditions for equilibrium and steady state in this case, assuming 
the ion has charge zG. Be careful, don’t just write the Nernst equation, we are assuming that some 
solute interaction raises the free energy of S2 by GC, not usually the case. Can the conditions at 
equilibrium differ from those at steady state in this case? If so, explain why this case is different 
from the n-gate model (i.e. how the assumptions differ). 
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Question 3 (from Hage and Salkoff J. Neurosci. 32:2714, 2014) 

The figure at right shows voltage-clamp currents in a 
cell containing only sodium and potassium channels. The 
membrane was clamped to potentials from -90 to +40 mV in 10 
mV steps and the figure shows the membrane currents evoked 
by those clamps. The important data for this question are the 
easily-seen currents at the highest clamp voltages (the most 
positive currents). The top plot shows large outward currents 
that get larger as the clamp voltage increases. The middle plot 
shows the currents that remain after TTX (tetrodotoxin, which 
blocks all sodium channels) is applied to the preparation. The 
currents are still outward, but smaller. The bottom plots shows 
the “TTX sensitive” current, which is the difference between the 
top and middle plots. These data are offered as evidence for 
sodium-dependent potassium channels (KNa), i.e. potassium 
channels whose gates are opened by a rise in intracellular 
sodium concentration. Explain how that conclusion is drawn, by 
answering the following. 

Part a) (15 points) The top plot contains both potassium 
and sodium currents, the second plot contains only potassium 
currents, because TTX is a very reliable blocker of all sodium 
channels and doesn’t directly affect potassium channels. 
Explain why these two plots are evidence for a KNa channel. For example, why can’t the difference 
between the top and middle plots be explained by the loss of sodium currents alone? 

Part b) (10 points) What is the large negative deflection at the start of the voltage clamp in 
the bottom and top plots (pointed to by the arrow) and why is it missing in the middle plot? 

Part c) (15 points) What ion carries the outward (positive) currents in the bottom plot? Also, 
what ion carries the outward currents in the middle plot? How are these two outward currents 
different, do they flow through the same channels? 

Part d) (10 points) There are two kinds of sodium channels, those with inactivation and 
those without (called “persistent”). Which kind of sodium channels are likely to be coupled to the K 
channels, given the figure above (Hint: the duration of the currents)? Do these data conclusively 
eliminate one type of channel and argue for the involvement of the other? 

Part e) (10 points) How could the uncertainty that remained in your mind in part d) be 
eliminated by veratridine, which enhances currents in persistent sodium channels but not in sodium 
channels with an inactivation gate? 

Question 4 

Part a) (15 points) The phase plane drawn at left below is one that was discussed extensively 
in class and project 1. It shows the MLE with an applied current very near the Hopf bifurcation 
produced by applied external current. At this current, the system is bistable, it has a stable 
equilibrium point (e.p.) and a stable limit cycle (l.c.). At first the Poincaré-Bendixson theorem does 
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not seem to apply to this system, because it is not clear that there is a region R in which the system 
has no equilibrium point but from which the system cannot escape. Argue that there is such a region, 
so the theorem actually does predict the existence of the limit cycle. (Hint: not everything is drawn 
in this phase plane.) 

 

Part b) (20 points) The phase plane drawn at right above is from a modification of the 
reduced HH model with two state variables (V and n) studied in the last three parts of project 1. The 
nullclines of V and n are shown by solid and dashed lines. The modification is not important, but it 
produces the small inverted-U shaped piece of V nullcline in the lower left part of the phase plane. 
This connects to the rest of the V nullcline outside the reachable portion of the phase plane. There is 
one unstable equilibrium point (solid dot). Argue that there is a limit cycle in this system and sketch 
its likely trajectory, using the “low-temperature” assumption, that dV dt >> dn dt , which is true 
except at the V nullclines.  

Then, sketch a likely trajectory beginning at the X in the lower left corner of the phase plane. 
Use the attached page for the sketches. (from Doiron et al. 2014). 

Question 5 

Part a) (15 points) The cable equation with applied current inputs is linear. Describe two (or 
more) ways in which dendritic trees are non-linear, i.e. ways in which summation of inputs in 
dendrites departs from the predictions of linear cable theory with inputs applied by current injection.  

Part b) (15 points) Real neurons have thousands of synaptic inputs, all of which are active at 
some moderate rate in vivo. What should be the effect of the activation of postsynaptic channels in 
this way on the electrotonic parameters of a cable (e.g. λ, τm, G∞). What are the effects on transfer 
functions from dendrite to soma, say the voltage gain AsynS at D.C. (0 frequency). Remember that 
AsynS is equal to the ratio of the potential VS produced in the soma and the potential Vsyn produced at 
the synaptic site by the synapse. This question assumes ongoing random inputs, so that the effect of 
the synaptic activity can be approximated as a steady moderate synaptic input. Use equations where 
necessary.  

Part c) (15 points) If the reversal potential of an inhibitory synapse is equal to the resting 
potential, so there is no IPSP, the synapse can still have an inhibitory effect. Explain how and tell 
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whether there are any constraints on the relative placement of excitatory and inhibitory synapses to 
make this work. 

Part d) (15 points) Explain from linear cable theory why action potentials should 
backpropagate (from soma into the dendrites) more strongly than to forward-propagate (from 
dendrites to soma). It will help to mention the MET. 

Question 6 

The voltage gain A01 was defined in class as the ratio of the potential V1 at site 1 in a dendritic 
tree to the potential V0 at site 0; the assumption is that the potential V0 produces the potential V1. For 
example a voltage clamp to V0 at site 0 produces spreads throughout the tree, and has value V1 at site 
1. 

Part a)  (15 points) Derive a formula for A01 in terms of K01, the transfer impedance from 
current injected at 0 to voltage produced at 1. 

Part b) (20 points) One might expect that there is some symmetry in voltage gains, for 
example that A01=1/A10 or that A01=A10. Show by counterexample that neither of these is true. (Or 
work out the correct relationship of A01 and A10.) 

Question 7 

Consider a neural network containing two neurons, whose activations are E1 and E2. The 
differential equations defining the neurons are given below. 

 

dE1

dt
= −E1 + F(E2 + K )

dE2

dt
= −E2 + F(E1 + K )

  where   F(x) = 1
1+ e−10(x−0.5)   

The neurons provide mutual recurrent excitation and receive a common input K (a constant). The 
squashing function is the function F(x) given at right. This problem concerns the stability properties 
of this 2nd order system of model neurons, which is a simple memory circuit. 

Part a) (15 points) The figure below shows two phase planes labeled (1) and (2). Which is 
the appropriate phase plane for the model above (for K=0)? Draw arrows on the phase plane to show 
the direction of trajectories in various places. 

Part b) (15 points) The system has three equilibrium points, shown by the black circles. To 
compute their characteristics, write an expression for the Jacobian of the system. Compute the 
eigenvalues at the equilibrium points, assuming that they are located at 0, 0.5, or 1 (not quite correct, 
but close enough). 

Part c) (15 points) The phase plane for the system with an input K = 0.2 is shown in (1a) or 
(2a). Tell what the steady state of the system will be with this input. What will happen if the input is 
K=-0.2? 
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Part d) (20 points) Sketch the bifurcation diagram for this system over a range of K  from 
about -0.5 to 0.5. From the bifurcation diagram show how this system could be used as a memory. 
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