How do cells regulate their excitability? The density of channels, along with the gating properties of channels, determine a cell's degree of electrical excitability, its ability to respond to stimuli, the patterns of activity it will generate, its computational abilities generally. Somehow, there must be a feedback connection from a cell's electrical activity back to its membrane properties, in order to regulate the former.

Sources for this lecture:

Turrigiano, Abbott, Marder Science 264: 974-977 (1994). LeMasson, Marder, Abbott Science 259: 1915-1917 (1993). Turrigiano, LeMasson, Marder J. Neuroscience 15: 3640-3652 (1995). Liu, Golowasch, Marder, Abbott J. Neuroscience 18: 2309-2320 (1998).

Taylor, Goaillard, Marder J. Neuroscience 29:5573-5586 (2009). Grashow, Brookings, Marder J. Neuroscience 30:9145-56 (2010).

2

Table	1. Equations	descr	ibing the activation and inac	tivation properties	of the ionic curren	ts of the model STG neuron
	Current	p	m _∞	h_{∞}	$ au_m$	$ au_h$
Voltage clamp analysis shows a	I _{Na}	3	$\frac{1}{1 + \exp\left[\frac{-V - 25.5}{5.29}\right]}$	$\frac{1}{1 + \exp\left[\frac{V + 48.9}{5.18}\right]}$	$1.32 - \frac{1.26}{1 + \exp\left \frac{-120 - V}{25}\right }$	$0.67 \bullet \frac{1}{1 + exp \left \frac{-62.9 - V}{10} \right } \bullet \left 1.5 + \frac{1}{1 + exp \left \frac{V + 34.9}{3.6} \right } \right $
number of channels present in the membrane	I _{Nap}	3	$\frac{1}{1 + \exp\left[\frac{-V - 26.8}{8.2}\right]}$	$\frac{1}{1 + \exp \left \frac{V + 48.5}{4.8} \right }$	$19.8 - \frac{10.7}{1 + \exp\left \frac{-26.5 - V}{8.6}\right }$	$\frac{666}{1 + \exp\left[\frac{-33.6 - V}{11.7}\right]}$
	I _{Ca1}	3	$\frac{1}{1 + \exp\left[\frac{-V - 27.1}{7.18}\right]}$	$\frac{1}{1 + \exp\left \frac{V + 30.1}{5.5}\right }$	$21.7 - \frac{21.3}{1 + \exp\left \frac{-68.1 - V}{20.5}\right }$	$105 - \frac{89.8}{1 + \exp\left[\frac{-V - 55.0}{16.9}\right]}$
	I _{Ca2}	3	$\frac{1}{1 + \exp \left \frac{-V - 21.6}{8.5} \right }$		$16 - \frac{13.1}{1 + \exp\left[\frac{-V - 25.1}{26.4}\right]}$	
	I _{KCa} *	4	$\frac{[Ca]}{[Ca]+3} \cdot \frac{1}{1 + \exp\left[\frac{-V - 28.3}{12.6}\right]}$		$90.3 - \frac{75.1}{1 + \exp{\frac{-V - 46}{22.7}}}$	
	IKd	4	$\frac{1}{1 + exp - V - 12.3}$		$7.2 - \frac{6.4}{1 + \exp\left[\frac{-V - 28.3}{19.2}\right]}$	
	IA	3	$\frac{1}{1+\exp\left \frac{-V-27.2}{8.7}\right }$	$\frac{1}{1 + \exp\left[\frac{V + 56.9}{4.9}\right]}$	$11.6 - \frac{10.4}{1 + \exp\left \frac{-V - 32.9}{15.2}\right }$	$\frac{38.6 - \frac{29.2}{1 + exp\left \frac{-V - 38.9}{26.5}\right }}{1 + exp\left \frac{-V}{26.5}\right }$
	I _{As}	3	$\frac{1}{1 + \exp\left \frac{-V - 24.3}{9.4}\right }$	$\frac{1}{1 + \exp \left \frac{V + 61.3}{6.6} \right }$	$13.3 - \frac{9.0}{1 + \exp\left[\frac{-V - 50.3}{11.8}\right]}$	$9821 - \frac{9269}{1 + \exp\left \frac{-V - 69.9}{4.6}\right }$
	Ih	1	$\frac{1}{1+\exp\left \frac{V+78.3}{6.5}\right }$		$272 - \frac{-1499}{1 + \exp\left \frac{-V - 42.2}{8.73}\right }$	
Turrigiano et al. 1995						

5

			Table 1. Equations gov	erning the voltage dependence a	nd kinetics of currents in the LP r	nodel
Consider on the of the LD coll Th			m	τ _n	h	τ_{k}
Consider a model of the LP cell. The	$I_{\rm Kd}$	m	$\frac{1}{1} \log\left(\frac{v+25}{17}\right)$	$120 - 113.8 \cdot lgc \left(\frac{v + 46.1}{18.1} \right)$		
models has 4 compartments (below) with	IM	m ³	$h = lgc \left(\frac{\nu + 14.5}{18.1} \right)$	3	$lgc\left(-\frac{v+68.1}{4\pi}\right)$	$119.4 - 100.1 \cdot lgc$
12 Ion channels (mose at right plus 2			(18.1)		(4.5)	1
leaks).	,		$lgr(\frac{v+21.0}{v+21.0})$	$10.3 - 5.3$, $lgc(\frac{v - 5.6}{v - 5.6})$	$lac(-\frac{v+55.0}{2})$	$253.4^{-1} \cdot lgc\left(\frac{\nu+9}{11.1}\right)$
The model includes Ca++ accumulation, to		m	n 160 22.8)	10.5 5.5 184 4	4.8	$250.5^{-1} \cdot loc = \frac{v+92}{2}$
drive the K(Ca) channel and has separate	L		((1	250.5 · ige 16
channels for the axon and the soma/	I_{Ca}	m^3	$h = lgc\left(\frac{v+15.2}{15.6}\right)$	$1.8 + 2.3 \cdot lgc\left(\frac{\nu + 40.2}{20.7}\right)$	1+[Ca]/12.57	0
dendrites.		1	(499 -	/ 12.57	
There are three inhibitory synaptic inputs			$lgc\left(\frac{\nu + 5.5}{8}\right)$	$\left(v - \frac{-51.9 - 2}{27 \ln([Ca])}\right)$	1	11.05
driven by the pyloric rhythm.	- KG		$1 + \left(\frac{[Ca]_{1}}{1.43} \right)^{-5}$	494 · lgc10	1+[[Ca] _i /7.2]	11.65
5 15 5	-	-		46.9		
			(v+84.3)	$\frac{40.9}{\log(+\frac{v-29.7}{v-29.7})+}$		
	I _h	m	$\lgc\left(-\frac{6.4}{6.4}\right)$	(19.4397) (v+206.2)		
				$\lgc\left(-\frac{1120012}{19.4397}\right)$		
near neurites leak leak far	$I_{\rm pr}$	m	$lgc\left(\frac{v-v_{V,pr}}{5}\right)$	6		
A h A h neurites		1	1	1	1	1
KCa pr KCa pr	L		$0.083^{-1} \cdot \exp\left(-\frac{\nu + 48.73}{16.480}\right)$	$0.333^{-1} \cdot \text{linoid}\left(\frac{\nu + 25.84}{9.155}\right) +$	$1.332^{-1} \cdot lgc\left(\frac{\nu + 13.76}{5}\right)$	$19.028^{-1} \cdot \exp\left(-\frac{\nu + 28.}{10}\right)$
<u>↓</u>	- NI	<i>"</i>	$1 + \frac{1}{0.333^{-1} \cdot \text{linoid}} \frac{v + 25.84}{v + 25.84}$	$0.083^{-1} \cdot \exp\left(-\frac{\nu + 48.73}{2}\right)$	$1 + \frac{1}{19.028^{-1} \cdot \exp\left(-\frac{\nu + 28.76}{\nu + 28.76}\right)}$	$1.332^{-1} \cdot lgc(\frac{\nu + 13.76}{\nu + 13.76})$
	-	-	(9.155)	16.480	-(10)	
leak leak			$21.312^{-1} \cdot exp\left(-\frac{\nu + 47.3}{21.312^{-1}}\right)$	$\frac{1}{26.639^{-1} \cdot \text{linoid}(\frac{\nu + 38.77}{26.639^{-1}})}$		
Kd Ca Na A h Kda	I _{Kå}	m	$\frac{1}{1+\frac{68.28}{26,620}}$	(8.535) (y+47.3)		
KCa pr Aa			26.639 ·· linoid 8.535	$21.312^{-1} \cdot \exp\left(-\frac{68.28}{68.28}\right)$		
			$\left[0.0761 \cdot \exp\left(\frac{\nu + 102.41}{32.006}\right) \cdot \right]^{\frac{1}{3}}$	(x+62.76)	[(+ 55 0)] ⁴	6.276+
	I _{Aa}	m ³	$h = 190 \left(-\frac{v+5.98}{v+5.98}\right)$	$1.710 + 5.453 \cdot lgc \left(-\frac{1.702176}{20.85}\right)$	$\left[\lg c \left[-\frac{110000}{15.015} \right] \right]$	$13.555 \cdot lgc \left(-\frac{v+52}{16.55}\right)$
			29.98			(10055

7

with random variation o	t the parameters as	in the table		Parameter	Minimum	Maximum	Units
at right.			Soma and neurites	<i>F.</i> .	-23	-13	mV
The models were tested f	or accentability bas	sed on		aleak	0.001	0.002	μS/nF
	or acceptationity ou	Ju on		ard ard	0	0.2	μS/nF
1. Input conductance				\overline{q}_{A}	0	0.5	μS/nF
				\bar{P}_{ca}	0	6	$\mu m^3/(ms \cdot n)$
Spontaneous activities	ty			<i>g</i> _{κca}	0	1	μS/nF
2 A stivity in the presence of sympattic inputs				\overline{g}_{h}	0	0.02	μ S/nF
5. Activity in the pres	sence of synaptic in	iputs.		\overline{g}_{pr}	0	0.008	μ S/nF
The ranges of acceptable parameters are given below				V _{Vz.pr}	-55	-35	mV
The fanges of acceptable	Neurites	\bar{g}_{synAB}	0	0.06	μS/nF		
				$\overline{g}_{\text{strPD}}$	0	0.06	μ S/nF
				\bar{g}_{synPY}	0	0.02	μS/nF
			Axon	E _{leak,ax}	-7	+3	mV
				7	0.2	0.45	uS/nE
Table 3. Bounds on properties used to	define the population of	admissible LP		gleak,ax	0.2	0.15	pesitin
Fable 3. Bounds on properties used to model neurons	define the population of	admissible LP		$g_{\text{leak,ax}}$ $\overline{g}_{_{\text{Na}}}$	0.2	600	μS/nF
Table 3. Bounds on properties used to nodel neurons	define the population of	admissible LP		g _{leak,ax} g _{na} g _{Kd}	0 0 0	600 74	μS/nF μS/nF
Table 3. Bounds on properties used to model neurons ² roperty	Lower bound	admissible LP Upper bound		$g_{\rm leak,ax}$ $\overline{g}_{_{\rm Na}}$ $\overline{g}_{\rm Kd}$ $\overline{g}_{\rm Aa}$	0.2 0 0	600 74 100	μS/nF μS/nF μS/nF μS/nF
Fable 3. Bounds on properties used to model neurons Property nput conductance (nS)	Lower bound 36	admissible LP Upper bound 132	For each model, each parar	$g_{\text{leak,ax}}$ $\overline{g}_{_{Na}}$ \overline{g}_{Kd} \overline{g}_{Aa} neter was drawn inde	0.2 0 0 pendently from a uni	600 74 100 form distribution with	μ.S/nF μ.S/nF μ.S/nF μ.S/nF
Table 3. Bounds on properties used to model neurons Property nput conductance (nS) Resting membrane potential (mV)	Lower bound 36 -47.5	Upper bound 132 — 32.5	For each model, each parar the maximal conductance	$g_{\text{leak,ax}}$ \overline{g}_{Na} \overline{g}_{Kd} \overline{g}_{Aa} meter was drawn inde of any current x, E_{leak}	0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	600 74 100 form distribution with al potentials in the in	μ.S/nF μ.S/nF μ.S/nF μ.S/nF n the given bounds. g, dicated compartmen
Table 3. Bounds on properties used to model neurons ² roperty nput conductance (nS) existing membrane potential (mV) esting spike rate (Hz)	Lower bound 36 -47.5 13.1	Upper bound 132 - 32.5 30.6	For each model, each parar the maximal conductance \bar{P}_{ca} is the maximal permeal the noroticity-activated co	$\begin{array}{c} g_{\text{leak,ax}}\\ \overline{g}_{_{Ba}}\\ \overline{g}_{_{Kd}}\\ \overline{g}_{_{Aa}}\\ \hline \\ $	0.2 0 0 0 0 0 0 0 0 2 0 2 0 2 0 2 0 0 0 0	600 74 100 form distribution with al potentials in the in re, and $v_{15,pr}$ is the hal ances and axial resis	μS/nF μS/nF μS/nF http://www.second dicated compartmen f-activation potential tanges were fixed S
fable 3. Bounds on properties used to model neurons ?roperty put conductance (nS) Resting membrane potential (mV) resting spike rate (Hz) ?hase of burst onset (%)	define the population of Lower bound 36 47.5 13.1 32.0	admissible LP Upper bound 132 32.5 30.6 44.0	For each model, each parar the maximal conductance $i P_{\alpha_i}$ is the maximal permeal the proctolin-activated co Results, Production of LP m	$\begin{array}{c} g_{\text{leak,ax}}\\ \overline{g}_{_{\text{Na}}}\\ \overline{g}_{_{\text{Na}}}\\ \overline{g}_{_{\text{Ad}}}\\ \overline{g}_{_{\text{Aa}}}\\ \end{array}$ meter was drawn indee of any current x, $E_{_{\text{leak}}}\\ bility of the (nonohusinductance. During sanodel population, for a$	0 0 0 0 pendently from a uni ralues are leak revers c) calcium conductanı mpling, the capacit. n explanation of hov	600 74 100 form distribution within ree, and $\nu_{i_2,pr}$ is the hal ances and axial resis these ranges were c	μS/nF μS/nF μS/nF the given bounds. ḡ, dicated compartmen f-activation potential tances were fixed. S hosen.
Fable 3. Bounds on properties used to model neurons 'roperty nput conductance (nS) 'esting membrane potential (mV) 'esting spike rate (Hz) 'hase of burst onset (%) 'hase of burst offset (%)	define the population of Lower bound 36 47.5 13.1 32.0 61.7	admissible LP Upper bound 132 32.5 30.6 44.0 74.9	For each model, each parar the maximal conductance \overline{P}_{c_1} is the maximal permeal the procloin-activated co Results, Production of LP m	$\begin{array}{c} g_{\text{leak,ax}}\\ \overline{g}_{_{\text{Ba}}}\\ \overline{g}_{_{\text{Kd}}}\\ \overline{g}_{_{\text{Aa}}}\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	600 74 100 form distribution with al potentials in the in ree, and $v_{15,pr}$ is the hal ances and axial resis v these ranges were c	μ.S/nF μ.S/nF μ.S/nF the given bounds. ḡ, dicated compartmen f-activation potential tances were fixed. S hosen.
rable 3. Bounds on properties used to model neurons Property nput conductance (nS) testing membrane potential (mV) testing spike rate (Hz) Phase of burst onset (%) Phase of burst offset (%) pike rate in burst (spikes/cycle)	define the population of Lower bound 36 -47.5 13.1 32.0 61.7 16.3	admissible LP Upper bound 132 - 32.5 30.6 44.0 74.9 30.2	For each model, each parar the maximal conductance \vec{P}_{cc} is the maximal permeal the proctolin-activated co Results, Production of LP m	$\begin{array}{c} g_{\text{leak,ax}}\\ \overline{g}_{_{Na}}\\ \overline{g}_{_{Kd}}\\ \overline{g}_{_{Aa}}\\ \end{array}$ meter was drawn indee of any current x, E_{leak} bility of the (nonohmin nductance. During sa nodel population, for a	0 0 0 0 pendently from a uni ralues are leak revers .) calcium conductan mpling, the capacit. In explanation of how	600 74 100 form distribution with al potentials in the in ce, and v _{ix,pr} is the hal ances and axial resis v these ranges were c	μ.S/nF μ.S/nF μ.S/nF μ.S/nF hthe given bounds.ḡ, dicated compartmen f-activation potential tances were fixed. S hosen.
Table 3. Bounds on properties used to model neurons Property nput conductance (nS) existing spike rate (Hz) Phase of burst onset (%) Phase of burst onset (%) Spike rate in burst (spikes/cycle) slow-wave amplitude (mV)	define the population of Lower bound 36 - 47.5 13.1 32.0 61.7 16.3 12.5	admissible LP Upper bound 132 	For each model, each parar the maximal conductance T _p _c is the maximal permeal the proctolin-activated co Results, Production of LP m	$\begin{array}{c} g_{\text{heak},ax}\\ \overline{g}_{_{\text{hea}}}\\ \overline{g}_{Kd}\\ \overline{g}_{Aa}\\ \overline{g}_{Aa}\\ \overline{g}_{Aa}\\ \overline{g}_{Ab}\\ g$	0 0 0 pendently from a uni values are leak revers) calcium conductan mpling, the capacit n explanation of hov	for distribution with a potentials in the in the second state of t	μ.S/nF μ.S/nF μ.S/nF μ.S/nF dicated compartmen f-activation potential tances were fixed. S hosen.
fable 3. Bounds on properties used to model neurons Property popt conductance (nS) Resting membrane potential (mV) resting spike rate (Hz) Phase of burst onset (%) Phase of burst offset (%) pike rate in burst (spikes/cycle) slow-wave amplitude (mV) Peak slow-wave potential (mV)	define the population of Lower bound 36 47.5 13.1 32.0 61.7 16.3 12.5 47.5	admissible LP Upper bound 132 32.5 30.6 44.0 74.9 30.2 27.5 32.5	For each model, each parar for each model, each parar \overline{P}_{cs} is the maximal permeal the proctolin-activated co Results, Production of LP n	$\begin{array}{c} g_{\rm leak,ax}\\ \overline{g}_{\rm xa}\\ \overline{g}_{\rm Xa}\\ \overline{g}_{\rm Aa}\\ \overline{g}_{\rm A$	0.2 0 0 pendently from a uni alaues are leak revers 0) calcium conductam pipling, the capacit n explanation of hov	600 74 100 form distribution with al potentials in the in ree, and v _{3i,qp} is the hal neces and availal resis t these ranges were c	μ.S/nF μ.S/nF μ.S/nF μ.S/nF dicated compartmen f-activation potential tances were fixed. S hosen.
Table 3. Bounds on properties used to model neurons Property Input conductance (nS) Resting membrane potential (mV) Resting spike rate (Hz) Phase of burst offset (%) Spike rate in burst (spikes/cycle) Slow-wave amplitude (mV) Slow-wave potential (mV) Sl coefficient of variation in burst	define the population of Lower bound 36 -47.5 13.1 32.0 61.7 16.3 12.5 -47.5 0	Upper bound 132 - 32.5 30.6 44.0 74.9 30.2 27.5 - 32.5 0.25 0.25	For each model, each parar the maximal conductance P_{ca} is the maximal permeal the proctolin-activated co Results, Production of LP m	$\begin{array}{c} g_{\rm leak,ax}\\ \overline{g}_{\rm sa}\\ \overline{g}_{\rm Kd}\\ \overline{g}_{\rm Ad}\\ \overline{g}_{\rm Aa} \end{array}$ meter was drawn inde of any current x, $F_{\rm lack}\\ \overline{g}_{\rm Aa}\\ \overline{g}_{A$	0.2 0 0 pendently from a uni ralues are leak revers 0 calcium conductan mpling, the capacit n explanation of how	600 74 100 form distribution with al potentials in the ir e, and v _{3,ag} is the hall ances and axial resis these ranges were of	μS/nF μS/nF μS/nF μS/nF the given bounds. dicated compartme factivation potenti tances were fixed. hosen.

