
580.439/639  Homework #4 

Due October 6, 2014 

Problem 1 

In developing a Hodgkin-Huxley type model for a 
channel current, the analysis is often based on tail currents, 
which are the currents which flow after the offset of a 
voltage clamp. An example is shown in the figure at right, 
taken from Huguenard and McCormick, J. Neurophys-
iology, 68, 1373, (1992). This example is the H-current 
(actually this figure shows the model currents, which are 
cleaner traces), whose HH model is 

  IH = g H h(V,t)(V − EH)  

where h is described by the usual differential equation 
involving parameters h∞(V) and τH(V). h is an inactivation 
gate, in the sense that h is large for potentials  hyperpolarized from rest and rapidly goes to 0 as the 
cell is depolarized. Consider how the parameters of this model can be determined from data like that 
in the figure. The figures shows responses to the voltage clamp protocol at the top, with voltage 
steps spaced every 5 mV from –100 to –55 mV. 

Part a)  Write an equation for the current during the hold period and another for the tail-
current period in terms of the parameters of the HH model and the parameters of the voltage clamp. 
Assume that the voltage clamp is held long enough that h=h∞ immediately prior to either voltage 
clamp transition.  

Part b)  For the H-current, the equilibrium potential EH is about -43 mV. Explain why the 
voltage-clamp current appears to reverse polarity at -65 mV in the figure above (Hint: where is zero 
current in the figure?). 

Part c)  Describe how tail currents can be used to determine EH experimentally. 

Part d) Explain how tail currents can be used to determine h∞(V) and τH(V). For a simple 
channel like the H-current, this may seem like overkill, in that the currents during the hold time 
should give the same information. However, suppose that the channel is not linear, as in the model 
used above, so that  
 IH = g H h(V, t) F(V,EH )  

where F(V,EH) is a rectifying instantaneous current-voltage relationship, like the GHK equation. 
Argue that the tail currents are immune to distortions from such rectification whereas currents 
during the hold time are not. 
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Problem 2 

The drawing at right below 
shows the scala media of the cochlea.  
This structure is filled with a high-K+ 
extracellular fluid, called endolymph, 
which resembles normal intracellular 
solutions, in that it has a high K+ 
concentration and a low Na+ 
concentration.  Endolymph is produced 
in a specialized epithelium, the stria 
vascularis, which actively transports K+ 
into scala media; the Na+ concentration 
is low, probably because it is not 
transported into scala media.  There is a 
net positive potential of ≈+80 mV in 
scala media.  Two other fluid-filled 
structures are adjacent to scala media; 
these are filled with perilymph, which is 
standard high-Na+, low-K+ extracellular 
fluid; the perilymphatic spaces are 
shaded and the endolymphatic space is 
unshaded at right.  The major current pathways associated with scala media are shown in the 
drawing as arrows and are described below. Although the anatomy is more complex, assume that 
each of the current paths A-D behaves like flux across a single membrane. 

A. Active transport between perilymph and endolymph; K+ is transported into endolymph.  
There are no significant passive currents in A. 

B. Passive flux of cations (approximately equal permeability for Na+ and K+, much less for 
Ca++) through the transduction channel of hair cells, between endolymph and the 
intracellular solution of hair cells. 

C. Passive flux of cations through ion channels in the hair cell basal membranes, between the 
intracellular solution of hair cells and perilymph.  This membrane contains Ca++, K+, Na+, 
and leak channels.  The hair cell has a resting potential of about -50 mV with the 
transduction channels closed. 

D. Passive flux through leak pathways between endolymph and perilymph; assume that this 
behaves like a single membrane barrier, directly between endolymph and perilymph.  This 
pathway has approximately the same conductance as pathway B,C because of the 
extraordinary system of tight-junctions between the epithelial cells lining scala media.  Its 
ionic selectivity is not yet known, but will be inferred below. 

Assume the following ionic concentrations (these are made-up, but approximately correct): 
  ion perilymph endolymph intracellular  
 K+ 3 mM 150 mM 150 mM 
 Na+ 140 mM 2 mM 2 mM 
 Cl- 140 mM 150 mM 10 mM 
 Ca++ 2 mM 1 mM 10-7 M 
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Part a)  Draw an electrical equivalent circuit for this system, showing the four current paths 
drawn above.  Remember that a channel can be modeled by a resistor in series with a battery. 
Assume that all parts of perilymph are equipotential at ground.  Estimate the values of the batteries, 
where possible. Leave out capacitors.  Represent active transport A by a current source.  Reduce 
path B,C to a single Thévenin equivalent circuit, and argue that its battery value can be determined 
from the information given above. 

Part b)  When current A is set to 0, by blocking the active transporter with ouabain, the 
potential in scala media drops to -75 mV.  What does this imply about the ionic selectivity of 
pathway D? (Assume the transduction channel is closed for this part.)  How is the normal +80 mV 
potential in scala media produced? 

Problem 3 

Under certain conditions, nerve membrane behaves like a resonant electrical circuit.  For 
example, small (subthreshold) steps of current injected into squid giant axon may produce potential 
changes which undergo underdamped oscillations (try this with the HH model you build in project 
1).  The resonant behavior derives from the active properties of channels, which can be shown to be 
equivalent to a linear RLC circuit under small signal conditions (e.g. Mauro et al., J. Gen. Physiol. 
55:497, 1970).  In this problem, we work out the small signal behavior of the delayed rectifier K+ 
channel of squid giant axon membrane. The development below is equivalent to linearizing the 
system around an equilibrium point. 

Assume that the membrane consists of K+ and leakage channels only, so that the following 
differential equations describe the membrane: 

 Iext = C
dV
dt

+ gK n
4 V − EK( ) + gL V − EL( )  (1a) 

and  

 dn
dt

= α(V ) 1− n( ) − β(V )n  (1b) 

Iext is total membrane current (externally applied current), n is the Hodgkin-Huxley activation 
parameter for the potassium channels, and α(V) and β(V)are functions of membrane potential only.  
In order to make a small signal analysis, we express Iext, V, and n as deviations from their values in 
the rest state, i.e. 

 Iext = Iext
r + iext      and     V= V r + v     and     n=nr +η  (2) 

Iext
r , V r , and nr are constants equal to the values of the three variables at resting potential Vr, which 

is an equilibrium point for the system.  iext, v, and η are small deviations in the values of the three 
variables from their rest values. 

a) By substituting the variables in (2) into the differential equations (1) and taking 
advantage of the fact that the resting potential is an equilibrium point, derive a pair of 
ordinary, linear differential equations relating iext, v, and η.  For this derivation, ignore 
second and higher order terms like v2 or η4.  This is justified by the small signal 
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assumption, i.e. that v << Vr,  η << nr, and iext << Iext
r ,.  The resulting equations should be 

expressible in matrix form as: 
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 where the matrix elements a, b, c, and d are scalar constants (i.e. not functions of t, V, or 
n).  Give expressions for a, b, c, and d.  Note that the matrix in Eqn.  (3) is the Jacobian 
of the system. 

 In carrying out this derivation, it will be necessary to assume that the Hodgkin-Huxley 
parameters α(V) and β(V) are approximately linear for small voltage fluctuations, i.e. that 

 α V r + v( ) ≈ α r + kαv     and     β V r + v( ) ≈ β r + kβv  

 where α r  and β r  are the values of α and β at rest potential. 

b) Derive a small-signal relationship between iext and v by eliminating η between the 
equations derived in a).  By far the easiest way to do this problem is to use the Laplace 
transformed (from 0 initial conditions) version of Eqn. (3). 

c) Show that the relationship between iext and 
v derived in b) is equivalent to the I-V 
relationship of the electrical circuit drawn at 
right (L is an inductor).  Give values for R0, 
L, R1, and C in terms of the parameters of 
the channel model.  Which components of 
the electrical circuit correspond to the 
potassium channel in the original membrane 
model? 

d) Show that 

 L =
τ n (V

r )
∂gk t→∞( )

∂V V =V r

V r − EK( )
 

 where gK t→∞( )  is taken to mean the steady-state value of gK at the resting potential. 

 


