
580.439/639  Homework #2 

Due 9/22/14 

Problem 1 

Flux as described by the Nernst-Planck equation can be shown to be equivalent to flux 
through the barrier system diagrammed below, where it is assumed that the diffusion barrier 
(membrane) consists of a large number of identical small barriers. 
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There are N barriers, each separated from its neighbors by a distance λ, so that the thickness of 
the membrane is Nλ.  The barriers have height GB and separate energy wells at GW.  The 
solutions on either side of the membrane are represented by sites 0 and N (C0 and CN), with 0 
energy.  The Ci are the concentrations of ion in each potential well.  Added to the energy 
diagram above is a trans-membrane potential difference ΔV = VN-V0, which is not shown; the 
membrane potential difference is assumed to obey the constant-field assumption, i.e. V(x) = 
ΔVx/(Nλ) within the membrane. 

a)  Let the flux over each barrier be Ji, i=1 . . . N.  Argue that the steady-state assumption 
implies that 

  J = J1 = J2 = = JN  

b) Assume that the net flux over each barrier is given by the following equation, which is 
similar to the barrier model used in class except that the distance λ between potential 
wells is pulled out of the (const) term in the equations for the rate constants ki. 

 Ji = λki−1Ci−1 − λk− iCi  

 Assume also that flux obeys the independence principle; that is, the concentrations are 
well below saturation so that the number of potential wells does not have be 
considered in the analysis (or equivalently, the number of potential wells is much 
larger than the number of occupied potential wells).  Write a flux equation for each 
barrier and solve them simultaneously to show that 
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c) Write expressions for ki and k-i from the parameters of the barrier model.  Include the 
membrane potential in these expressions and assume constant field.  Actually, all you 
really care about are the terms appearing in Eqn. (*): k0, k-N/k0, and k-i/ki. 

d) Using the rate constants from c), show that, if N is large, then Eqn. (*) reduces to a 
form equivalent to the Goldman-Hodgkin-Katz constant-field equation derived from 
the Nernst-Planck equation in Hille and discussed in class.  Give an explicit equation 
for mobility u in terms of the parameters of the model above. (Hint: the approximation 
exp(ε)≈(1+ε)  for ε<<1 may be useful.) 

Problem 2 (Independence) 

In the first problem, an equation was derived for flux through a channel system in which 
independence holds, meaning that the concentration of ion in the system is low enough that we 
can ignore the fact that there is a finite amount of channel present.  It should be evident that Eqn. 
(*) above applies generally to any barrier system in which independence holds.  That is, the 
specific simple barrier structure assumed for Problem 1 does not affect the derivation of parts a) 
and b) of either of the previous two problems.  Begin with Eqn. (*) for this problem. 

a) The Ussing flux ratio is a condition for independence of ion fluxes. It is usually 
written as follows: 

 
JA→B

JB→A

=
CA

CB

ezF (VA −VB )/RT  (**) 

 JA→B and JB→A are unidirectional fluxes from side A to B or vice versa and CA, CB, VA, 
and VB are the concentrations and electrical potentials on the two sides of the 
membrane. If Eqn. (**) holds for a flux, then it is consistent with independence (see 
the discussion on pp. 358-360 of Hille). Derive the Ussing flux ratio equation from 
Eqn. (*). In doing this show that the result is not affected by the specifics of the barrier 
system assumed.  (Hint: what are the unidirectional fluxes predicted by Eqn. (*)?). 
How would the flux ration in a non-independent system deviate from Eqn. (**)? 

b) Derive the Hodgkin/Huxley test for independence from Eqn. (*). This test is based on 
the currents that are measured with two different concentration gradients of an ion 
across a membrane. If current IS is measured with concentrations Si and So on the two 
sides of a membrane and current ′IS  is measured with concentrations ′Si  and ′So , then 
the ion is transported independently if 

 ′IS
IS

= ′Si − ′Soe
− zSFΔV /RT

Si − Soe
− zSFΔV /RT
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  You will have to make additional assumptions.  (See Hille, p. 472-476). 

Problem 3 

Consider the diagram at right which shows the 
energy landscape of a receptor molecule, like 
rhodopsin, in the absence of activating energy (solid 
black line) and after activation by absorbing a photon 
(dashed gray line). This is a simplified version of the 
steps in visual transduction (based on Deupi and 
Kobilka Physiology 25:293, 2010). The diagram 
shows the relative energy of various conformations of 
the receptor molecule. This is different from the 
assumption made in analyzing ion channels in which 
the reaction coordinate was the position of an ion 
within the channel molecule, whose conformation was 
assumed fixed. In this case, the reaction coordinate corresponds to various conformations of the 
molecule itself and there is no mobile ion involved. The molecule can move among the various 
states indicated on the energy diagram according to kinetics like those used to model ion 
movements. For simplicity, we ignore movements of charges within the molecule as it changes 
conformations. 

When the molecule absorbs a photon, its energy diagram changes (assumed 
instantaneously) from the solid line to the dashed line, with a change in the energy level of the G1 
state to ′G1 and the G9 state to ′G9 . The other energy levels do not change. (Ignore the dotted lines 
and the ′G6  state for parts a) through c) below.)  

Part a)  Assuming that the system is in steady state, compute the fraction of receptor 
molecules in each of the various conformations (G1, G3, G5, G7, and G9) of the unactivated 
molecule. Repeat this calculation for the activated molecule (for states ′G1 , G3, G5, G7, and ′G9 ), 
again assuming a steady state. (The answer is long-winded, so for the repeat, just state how the 
equations change for the activated state without rewriting the whole thing.) It may be useful to 
define rate constants for transitions along the reaction coordinate, which will be needed later. 

Part b) Based on the calculations of part a), explain qualitatively what happens to the 
conformation of the molecule when it absorbs a photon. The energy difference ΔG is large 
compared to RT. 

Part c)  Write differential equations to model the flux of molecules through the energy 
barrier system immediately after absorbing a photon. Assume a fixed total number of molecules  
and assume that at time 0 (when the photon is absorbed), all the molecules are in the ′G1  state. 
This will require defining appropriate rate constants (just define them, don’t write out their 
values in terms of the energy levels). The differential equations will describe the time derivatives 
of the state variables  x1, x3, x5, x7, and x9, which are the fraction of molecules in each of the 
corresponding states. Writing this in the naïve and straightforward way gives a system like 
 d
x dt =Mx , with a singular 5x5 matrix M. Rewrite the system in a similar form with a 4x4 

matrix that is not (obviously) singular. 


