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Electron Beam Induced DepositionElectron Beam Induced Deposition

Electron Beam

Low
Organometallic 
precursor
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Substrate

The ability to focus electron beams into small spots, control
l t b fl d t th b k EBIDelectron beam fluence and raster the beam makes EBID an 

ideal method for growing a wealth of different nanostructures



Examples of EBIDExamples of EBID
Pt wire grown on SiO2 from MeCpPtMe3

Freestanding Pt wire grown from MeCpPtMe3

Gopal et al., Appl. Phys. Lett., 2005, 49.

Pt wire, 4μm long, grown between 

Frabboni et al., Physica E, 2007, 265. Rh grown on graphite from 
[RhCl(PF3)2]2

Au electrodes on Si / SiO2
substrate from MeCpPtMe3

Botman et al., Nanotechnology, 2006, 3779. Cicoira et al., J. Cryst. Growth, 2004, 619.



MotivationMotivation
The fundamental surface processes that are 

responsible for electron beam induced deposition of 
nanostructures are not well understoodnanostructures are not well understood

• Many questions about EBID process
• Chemical reactions at the surface? 

•If we can better understand the chemistry, we can: 
• Choose precursors more selectively
• Improve deposition purity (carbon)• Improve deposition purity (carbon)
• Improve purification techniques
• Increase metallic characteristics
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Our ApproachOur Approach

• To understand the EBID process using well established p g
surface analytical techniques

– Adsorbing a nanometer scale film of EBID precursor to a substrateAdsorbing a nanometer scale film of EBID precursor to a substrate 
provides a “clean” environment for in situ observation

– Surface coverage can be controlledSurface coverage can be controlled

– An UHV environment enables analysis of gas phase products

– A film, on the order of cm2 in area, can be analyzed using common 
surface analytical techniques



Broad Beam Surface IrradiationBroad Beam Surface Irradiation

Electron Beam

Production of a film over a 
large surface area enables 
traditional surface analytical 
techniques to probe the EBID

Pt

techniques to probe the EBID 
process

CH 3CH3CH3

Gold Substrate (~195K) Gold Substrate (~195K)Gold Substrate (~195K) Gold Substrate (~195K)



Instrumental TechniquesInstrumental Techniques
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• We have studied the electron stimulated reactions of the well-

Gold Substrate (~195K)

We have studied the electron stimulated reactions of the well
known Pt precursor, Trimethyl(methylcyclopentadienyl)-
platinum(IV), adsorbed onto gold using the above techniques:



OutlineOutlineOutlineOutline

• Background / Motivation
• Experimental ApproachExperimental Approach
• Surface Chemistry and Kinetics (fixed 

electron energy = 500eV)electron energy = 500eV)
• Summary



RAIRS Analysis of Dissociation KineticsRAIRS Analysis of Dissociation Kinetics
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Adsorption of MeCpPt(IV)MeAdsorption of MeCpPt(IV)Me33 onto onto 
Gold SubstrateGold Substrate –– Controlling filmControlling filmGold Substrate Gold Substrate –– Controlling film Controlling film 

thicknessthickness
Influence of Dosing Time on Film Thickness
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Production of Amorphous Production of Amorphous 
Platinum/Carbon FilmPlatinum/Carbon Film
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Influence of eInfluence of e-- Beam Irradiation on Beam Irradiation on 
Surface Composition of Adsorbate LayerSurface Composition of Adsorbate Layer
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XPS Analysis of Dissociation KineticsXPS Analysis of Dissociation Kinetics
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Signal Resolution vs. Signal IntensitySignal Resolution vs. Signal Intensity
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Carbon Loss During IrradiationCarbon Loss During Irradiation
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• The C:Pt ratio of 10 XP spectra of the MeCpPt(IV)Me3 prior to e- beam irradiation is 
representative of the initial stoichiometric ratio of 9 carbon atoms to 1 platinum atomThe stoichiometric loss of 1 

carbon atom as a result of 
irradiation is independent of
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Gas Phase Products AnalysisGas Phase Products Analysis
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Kinetic Analysis of Methane ProductionKinetic Analysis of Methane Production
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•Tracking methane production during electron beam irradiation fit to exponential decay
•m/z = 15 is a unique mass representative of methane
•Methane loss fit to first order kinetics indicates an increase in the observed rate constant 
with increasing target current



Dissociation by PtDissociation by Pt--CHCH33 CleavageCleavage
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Analogous compound decomposes via production of identical gas phase products



Complementary TechniquesComplementary Techniques
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SummarySummary
Pt atoms embedded

+
CH4 (g)/H2(g)

Pt atoms embedded 
in an 

amorphous C
film

one electron
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Rate 
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•Electron beam irradiation of surface adsorbed MeCpPt(IV)Me3 results in the
formation of platinum atoms embedded in an amorphous carbon film via anformation of platinum atoms embedded in an amorphous carbon film via an
electron impact process in which bond cleavage releases hydrogen and methane.

•Each precursor molecule that undergoes electron stimulated decomposition

A UHV surface science approach can provided valuable

p g p
losses exactly one carbon atom.

A UHV surface science approach can provided valuable 
information on reaction rates and 

fundamental chemical processes involved in EBID 
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Solution to Au satellitesSolution to Au satellites
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Electron Source:  Flood Gun
• Why use a flood gun?

– Uniform electron beam over a wide area (necessary for XPS and 
RAIRS)

– High target current
– Relatively broad range of Energies (40 – 500eV)

Adjustable Filament 
Current

Extractor

e-
Current

Wehnelt

Tungsten wire

Electron Flood Gun can produce:
(a) 40 - 500 eV electrons
(b) 5 -150 μA target currents



Sample
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Cu leads provide for heating and cooling 
(100K 450K)(100K-450K)



X-ray Photoelectron Spectroscopy 
(XPS)(XPS)

KE
Ejected

Photoelectron

BE = hν - KEhν

BE

KE

2s
2p

Vacuum Level

hν Electron

1s Pt(4f)

Electron
Irradiation

Time
(sec)

Au(4p) Au(4d) C(1 ) Pt(4f)

PtParent PtProduct

un
ts

 (a
.u

.)

C
ou

nt
s 

(a
.u

.)

60

1200
Au(4p) Pt(4p) Au(4d) Pt(4d) C(1s) Au(4f) Pt(4f)

Binding Energy (eV)
0200400600

C
ou

707274767880

0

XPS enables quantitative determination of 
chemical composition and effective 
oxidation state

g gy ( )
Binding Energy (eV)

Reduction of Pt indicated by 
peak shift to lower BE



Reflection Absorption Infrared 
Spectroscopy (RAIRS)Spectroscopy (RAIRS)

FT-IR 
Beam IR 

DetectorUltra-High 
Vacuum

Pt

CH 3CH3CH3

Reflective Au Electron
I di tiVacuum

.) 1200

Irradiation
Time
(sec)

ν(C-H)

ν(C-H)

MeCpPtMe3
vibrational

ns
ity

 (a
.u

.)

nt
en

si
ty

 (a
.u

240

1200vibrational 
structure

IR
 In

te
n

0.01 Abs

IR
 In

0 001 Abs
0

Wavenumber (cm-1)

10001500200025003000

Wavenumber (cm-1)

27002800290030003100

0.001 Abs



Mass Spectrometry (MS)
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