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Electron Beam Induced Deposition

Electron Beam
. [ " ® Low
Organometallic Pressure

A2

Substrate

The ability to focus electron beams into small spots, control
electron beam fluence and raster the beam makes EBID an

ideal method for growing a wealth of different nanostructures



Examples of EBID

Pt wire grown on SiO, from MeCpPtMe,
Freestanding Pt wire grown from MeCpPtMe,

Gopal et al., Appl. Phys. Lett., 2005, 49.

Frabboni et al., Physica E, 2007, 265. Rh grown on graphite from
[RRCI(PE.).1,
1um
Pt wire, 4um long, grown between
Au electrodes on Si/ SiO,
substrate from MeCpPtMe,

Botman et al., Nanotechnology, 2006, 3779. Cicoira et al., J. Cryst. Growth, 2004, 619.



Motivation

The fundamental surface processes that are
responsible for electron beam induced deposition of
nanostructures are not well understood

v

« Many guestions about EBID process
 Chemical reactions at the surface?

oIf we can better understand the chemistry, we can:
e Choose precursors more selectively
* Improve deposition purity (carbon)
 Improve purification techniques
* Increase metallic characteristics
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Our Approach

 To understand the EBID process using well established
surface analytical techniques

— Adsorbing a nanometer scale film of EBID precursor to a substrate
provides a “clean” environment for in situ observation

— Surface coverage can be controlled
— An UHV environment enables analysis of gas phase products

— Afilm, on the order of cm? in area, can be analyzed using common
surface analytical techniques



Broad Beam Surface Irradiation

Electron Beam

Production of a film over a
large surface area enables
traditional surface analytical

technigues to probe the EBID
process
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Instrumental Techniques
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 We have studied the electron stimulated reactions of the well-
known Pt precursor, Trimethyl(methylcyclopentadienyl)-
platinum(lV), adsorbed onto gold using the above techniques:
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o Surface Chemistry and Kinetics (fixed
electron energy = 500eV)



RAIRS Analysis of Dissociation Kinetics

*Time resolved in situ Irradiation
RAIRS analysis shows Time (sec)
loss of v(C-H) intensity 1 .001 abs. ‘1’
with increasing electron 0
beam irradiation
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Adsorption of MeCpPt(IV)Me,; onto
Gold Substrate — Controlling film
thickness

Influence of Dosing Time on Film Thickness

Film thickness, d, calculated from 7

attenuation of Au(4f) signal Paosing = 1X10° Torr .
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Counts (a.u.)

Production of Amorphous
Platinum/Carbon Film

Pt (4f)
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XP spectra of sputter
deposited platinum on gold

Substrate heated to room
temperature leaving electron
beam irradiation product

Electron beam irradiation
for 20 sec (20uA, 500eV)

MeCpPt(IV)Me; adsorbed
onto gold substrate (~195K)
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Influence of e Beam Irradiation on
Surface Composition of Adsorbate Layer

The XP spectra of the
C(1s), Au(4f), and
Pt(4f) regions shows:

*No loss of platinum
from surface

*Shift in platinum
environment from
precursor to product
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In [Pt(4f),J/[Pt(4f),_,]

XPS Analysis of Dissociation Kinetics
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Decay profiles show that the observed rate constant increases with increasing
target current.



Signal Resolution vs. Signal Intensity
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Carbon Loss During Irradiation
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Gas Phase Products Analysis
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Kinetic Analysis of Methane Production
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*Tracking methane production during electron beam irradiation fit to exponential decay

*m/z = 15 is a unique mass representative of methane
*Methane loss fit to first order kinetics indicates an increase in the observed rate constant

with increasing target current



Dissociation by Pt-CH; Cleavage
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Analogous compound decomposes via production of identical gas phase products
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Summary

Pt atoms embedded

in an
\ (;|.|4 (g)/H,(g) amorphous C
film
one electron /

/f’t Rate -
CH; C:H3\CH3 determining CH3 CH3 CH3 PtC, ﬂ
SIS step S S S S S/ /K/ S/

Electron beam irradiation of surface adsorbed MeCpPt(IV)Me; results in the
formation of platinum atoms embedded in an amorphous carbon film via an
electron impact process in which bond cleavage releases hydrogen and methane.

*Each precursor molecule that undergoes electron stimulated decomposition
losses exactly one carbon atom.

A UHV surface science approach can provided valuable
iInformation on reaction rates and
fundamental chemical processes involved in EBID
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Solution to Au satellites

XPS Intensity (arb. units)
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Electron Source: Flood Gun

 Why use a flood gun?
— Uniform electron beam over a wide area (necessary for XPS and
RAIRS)
— High target current
— Relatively broad range of Energies (40 — 500eV)

Extractor

Adjustable Filament 7% ]
Current \:2 "; >\ >€
Wehnelt — £ \

Tungsten wire

Electron Flood Gun can produce:
(a) 40 - 500 eV electrons
(b) 5 -150 pAtarget currents



Sample
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Cu leads provide for heating and cooling
(100K-450K)



X-ray Photoelectron Spectroscopy
(XPS)
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XPS enables quantitative determination of Binding Eneray (eV)

chemical composition and effective
oxidation state

Reduction of Pt indicated by
peak shift to lower BE



IR Intensity (a.u.)

Reflection Absorption Infrared
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Mass Spectrometry (MS)

MS was used to:

« Verify purity of H, @
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