CHEMISTRY A European Journal

Supporting Information

Designer Metallic Acceptor-Containing Halogen Bonds: General Strategies

Xinxing Zhang* and Kit Bowen*^[a]

chem_201701067_sm_miscellaneous_information.pdf

SUPPORTING INFORMATION

WILEY-VCH

Abstract: Being electrostatic interactions in nature, hydrogen bonding (HB) and halogen bonding (XB) are considered to be two parallel worlds. In principle, all the applications that HB has could also be applied to XB. However, there has been no report on a metallic XB acceptor but metal anions have been observed to be good HB acceptors. This missing mosaic piece of XB is because common metal anions are reactive for XB donors. In view of this, we propose two strategies for designing metallic acceptor-containing XB using *ab initio* calculations. The first one is to utilize a metal cluster anion with a high electron detachment energy, such as the superatom, Al_{13} as the XB acceptor. The second strategy is to design a ligand passivated/protected metal core while it still can maintain the negative charge; several exotic clusters, such as PtH_5^- , $PtZnH_5^-$ and $PtMgH_5^-$, are utilized as examples. Based on these two strategies, we anticipate that more metallic acceptor-containing XB will be discovered.

Table of Contents

Theoretical Methods Results and Discussion Table S1 The 3D coordinates of all the studied clusters using the PBEPBE functional. The 3D coordinates of all the studied clusters using the M06-2x functional.

Theoretical Methods

Density functional theory calculations were conducted by applying the PBEPBE^[1] and M06-2x^[2] functionals using the Gaussian09 software package^[3] to determine the geometries of all clusters. All geometries were fully optimized without any geometrical constraints using the 6-311++G (3df, 3pd) basis set^[4] for main group elements and the Stuttgart/Dresden (SDD)^[5,6] effective core potentials for the transition metals. All the calculated energies were corrected with zero-point energies. Vibrational frequencies were calculated to make sure they are not transition states. Natural population analysis (NPA)^[7], as implemented in the Gaussian09 code, was carried out to determine the charge distribution within the complexes. We also mapped the electrostatic potential surfaces (ESP) of all the clusters to visualize the σ -hole and the halogen bonding. The XB strength was calculated using the formula D₀[CF₃Br-Y⁻] = E[CF₃Br] + E[Y⁻] – E[CF₃Br-Y⁻] and tabulated in Table 1 and Table S1, where Y⁻ denotes the XB acceptor.

Results and Discussion

The calculated XB strengths and lengths of all the complexes using the M06-2x functional are tabulated in Table S1. Comparing to those results from the PBEPBE functional in Table 1, the M06-2x functional gives relatively longer bond lengths and weaker bond strengths. However, the binding energy differences between these two methods are around 0.1 eV, which is satisfactory. The two methods used in this manuscript are reliable according to previous works.^[8]

Table S1. The XB strength D₀[CF₃Br-Y] (eV) and length (Å) of different systems calculated from the M062x functional.

Species ^[a]	X- Br	X- Al ₁₃ -	X- PtH₅⁻	X₂- PtH₅⁻	X- PtMgH₅⁻	X- PtZnH₅⁻
D ₀	0.54	0.21	0.42	0.40	0.34	0.38
XB length	3.11	3.57	3.17	3.21	3.27	3.23

[a] CF₃Br is denoted as X for short.

3D coordinates using the PBEPBE functional (Å)

CF₃Br-Al₁₃⁻

AI	4.00815600	-1.22170900	1.07968700
Al	2.41121000	0.52598600	2.56271800
Al	1.39225800	-1.95093500	1.73707800
Al	2.40008100	-2.48542400	-0.82273300
Al	4.01515800	-0.33834300	-1.58778600
Al	-0.20394400	-1.52820500	-0.51170800
Al	1.41507000	2.48336200	0.82177300
Al	4.02284700	1.52945200	0.51242600
Al	-0.19682200	0.33665100	1.58501700
Al	2.42167700	1.95125400	-1.73734500
Al	-0.19288000	1.22037500	-1.07692000
Al	1.40242100	-0.52450000	-2.55934600
AI	1.90985200	-0.00009600	0.00034800
С	-5.56947700	-0.00130900	0.00201300
Br	-3.58955600	0.00273400	-0.00447400
F	-6.05391700	-0.90655000	-0.87009000
F	-6.05579300	1.20697900	-0.34235000
F	-6.04748500	-0.30711000	1.22386100

CF₃Br-Br⁻			
С	-2.22349700	-0.00021200	-0.00006100
F	-2.74228800	0.93839700	0.83933700
F	-2.74118400	-1.19767900	0.39119900
F	-2.73904600	0.25863100	-1.23381200
Br	-0 22387200	0.00033000	0.00126900
Br	2 71940500	-0.00012600	-0.000/1600
Di	2.71340300	-0.00012000	-0.00041000
CF₃Br-PtH₅	-		
С	3.08624500	0.00047600	-0.00014300
F	3.59627100	-0.06924900	-1.25725000
F	3,59843400	-1.05227500	0.68895500
F	3 59545600	1 12489900	0 56711900
Br	1 08778300	-0 00149400	0.00053700
Dt	-1 85131200	0.00143400	-0.00000000
гі	1 95909500	1 22282400	-0.00003000
	-1.00090000	1.33363400	-0.93293600
п	-1.85954700	1.29929100	0.98027700
н	-1.85929300	-0.47498400	-1.55658200
н	-1.86060400	-0.53089000	1.53823600
Н	-1.86055500	-1.62690500	-0.02927900
CE-Br-DtH-	-CE-Br		
C	-/ 99167900	-0 00753700	0 00060400
E	-5.48442000	-0.00700700	-0.34008500
r r	-3.46442000	-1.22199900	-0.34006500
F	-5.49591800	0.89026000	-0.87800400
F	-5.49441500	0.30137400	1.21910000
Br	-3.01631800	0.00262700	0.00246300
Pt	-0.00012800	0.00604700	-0.00248800
Н	-0.00302900	-1.11771300	1.17433100
Н	-0.00283100	0.77611100	1.43043500 🦯
Н	0.00044500	-1.45930700	-0.70877200
Н	0.00033800	1.60777600	-0.29201200
Н	0.00262600	0.22322900	-1.61506800
С	4.99143700	-0.00606800	0.00036400
F	5.49188300	0.61824900	-1.09148100
F	5.49462800	0.62607800	1.08643900
F	5.48929200	-1.26554200	0.00538200
Br	3.01644500	-0.00136600	0.00288500
	0.0.0	0.00100000	0.00200000
CF₃Br-PtMថ	gH₅ ⁻		
Pt	1.57146700	-0.00007300	0.00010800
Н	1.53572300	-1.04041900	1.24906800
н	1.53524600	0.86791900	1.37460700
н	1.53631500	-1.50949600	-0.60281100
н	1.53596900	1,57547000	-0.40030800
н	1 53673600	0 10711500	-1 62182300
Ma	1.00070000	0.00140500	-0.00266500
C	-3 48072800	0.0078300	
E	2 00716200	0.00070500	1 10027000
r F	-3.99716200	-0.37 160900	1.19927900
F	-3.99158600	-0.85306300	-0.92743800
F	-3.99005600	1.22953700	-0.28089000
Br	-1.46651100	-0.00175200	0.00330500
CF ₂ Br ₂ Dt7n	H		
Pt	1 14622200	0.00043100	-0.00015000
н	1 10472100	1 23987800	1 05267100
	1 10/7/000	1 38/11200	-0.85445200
	1.10474000	-0.61600000	1 50426700
	1.10400000	0.01090000	1.50430700
п 11	1.10392200		-1.30004700
П 7-	1.10432700	-1.0211/800	-0.12284/00
∠n	3.72139100	-0.00158000	0.00049300

-3.87257200 -0.00156000 0.00044400

С

SUPPORTING INFORMATION

F	-4.38057700	1.19560600	0.38679400
F	-4.37501300	-0.93625300	0.84567300
F	-4.37887800	-0.26775100	-1.22957000
Br	-1.86067500	0.00278100	-0.00090100

3D coordinates using the M06-2x functional (Å)

CF ₃ Br-Al ₁₃ -			
AI	-4.05171300	-0.83898200	-1.37398300
AI	-2.45919500	1.25481100	-2.27741900
AI	-1.45499000	-1.34299100	-2.22649600
AI	-2.44351200	-2.60166700	0.05235900
AI	-4.04745200	-0.78277300	1.41297400
AI	0.14980200	-1.60351600	0.02839500
AI	-1.46367400	2.60200700	-0.05285200
AI	-4.05792400	1.60169600	-0.02881500
AI	0.14126900	0.78375900	-1.41400700
AI	-2.45179800	1.34436900	2.22610500
AI	0.14502100	0.84001800	1.37466000
AI	-1.44734000	-1.25322800	2.27660700
AI	-1.95286800	0.00037900	-0.00031500
С	5.65782500	0.00274200	-0.00201300
Br	3.73103300	-0.00583000	0.00451700
F	6.13993700	-1.18537800	0.33213800
F	6.13197600	0.89170500	0.85871200
F	6.12739400	0.30891000	-1.20304800
CF₃Br-Br⁻			
C	-2.23646400	-0.00014300	0.00102300
F	-2.73877100	-0.95905500	-0.78090200
F	-2.73910000	1.15676700	-0.43709200
F	-2.73617100	-0.19891600	1.22317800
Br	-0.31021100	0.00051600	-0.00238100
Br	2.80578800	-0.00018200	0.00087300
CF₃Br-PtH₅	5		
С	-3,15294500	-0.00079400	-0.00102900

С	-3.15294500	-0.00079400	-0.00102900
F	-3.64883400	1.08043200	-0.60122100
F	-3.64979200	-0.02339800	1.23510200
F	-3.64522400	-1.06203200	-0.63899200
Br	-1.23271800	0.00220700	0.00219400
Pt	1.93443800	-0.00029300	-0.00029200
Н	1.93758000	0.02765500	-1.60358400
Н	1.93449800	-1.51623500	-0.52245300
Н	1.93624600	1.53336200	-0.46894400
Н	1.93113100	-0.96737000	1.27868400
Н	1.93182200	0.91797300	1.31448000

CF ₃ Br-PtH ₅	₅ ⁻ -CF₃Br		
С	5.12788200	0.00865700	-0.00455600
F	5.61025900	0.95025100	-0.81139600
F	5.62269600	-1.15545200	-0.41778700
F	5.62239600	0.23909200	1.20921700
Br	3.21081400	-0.00024600	0.00432200
Pt	-0.00003200	-0.00844300	0.00119800
H	-0.00037500	1.45880900	0.64765700
H	0.00005400	-0.16994000	1.59640000
H	-0.00031500	1.06019400	-1.19451300
Н	0.00038200	-1.57566100	0.33959100
Н	0.00008500	-0.81516700	-1.38468200
С	-5.12787600	0.00887500	-0.00516700
F	-5.61978700	-0.99687000	-0.72445600

SUPPORTING INFORMATION

F	-5.62492000	-0.10624000	1.22401500
F	-5.61025200	1.13610500	-0.52187300
Br	-3.21083900	0.00005000	0.00542000
CF₃Br-PtMg	gH₅⁻		
Pt	1.64581300	0.01072800	0.00270300
Н	1.60771900	-0.99010800	1.25314700
Н	1.63443800	0.89326300	1.33977300
Н	1.59527200	-1.48616800	-0.56477700
Н	1.63263200	1.55514800	-0.42172600
Н	1.60931700	0.08747100	-1.59719300
Mg	4.22906100	-0.04298800	-0.01374400
С	-3.55035700	-0.00107800	-0.00275600
F	-4.04183300	-0.36570300	1.17801400
F	-4.04045600	-0.83710300	-0.91225400
F	-4.02952300	1.20865700	-0.27616900
Br	-1.62551600	-0.01219200	0.00157400
CE Dr Dt7n	ц -		
	Π ₅	0.00440400	0.004.40000
Pt	-1.19010000	-0.00119100	0.00148900
н	-1.15612000	1.48188900	0.60957500
Н	-1.15906500	-0.12278000	1.59951800
Н	-1.15547900	1.03452200	-1.22152800
Н	-1.16116700	-1.55822200	0.38041200
Н	-1.15679700	-0.84413300	-1.36126800
Zn	-3.89317800	0.00304600	-0.00326700
С	3.96280100	0.00250400	-0.00212400
F	4.45247100	0.85105100	0.89829900

References

F

F Br

- [1] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- [2] Y. Zhao, D. G. Truhlar, J. Phys. Chem. A 2006, 110, 51215129.
- [3] M. J. Risch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al. Gaussian 09, revision A.1; Gaussian, Inc.:Wallingford, CT, 2009
- [4] R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650.

4.450930000.36008600-1.187146004.45634300-1.200886000.28054500

2.03992200 -0.00277200 0.00179000

- [5] M. Dolg, U. Wedig, H. Stoll, H. Preuss, J. Chem. Phys. 1987, 86, 866.
- [6] P. Schwerdtfeger, M. Dolg, W. H. E. Schwarz, G. A. Bowmaker, P. D. W. Boyd, J. Chem. Phys. 1989, 91, 1762.
- [7] a) A. E.Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899-926; b) J. P. Foster, F. Weinhold, J. Am. Chem. Soc. 1980, 102, 7211-7218; c) F. Weinhold, C. R. Landis, Valency and Bonding, A Natural Bond Orbital Donor—Acceptor Perspective, Cambridge University Press, Cambridge (UK), 2005.
- [8] S. Kozuch, J. M. L. Martin, J. Chem. Theory Comput. 2013, 9, 1918-1931.