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Evolution of superhalogen properties in PtCl, clusters
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(Received 14 March 2012; accepted 30 April 2012; published online 18 May 2012)

We have systematically calculated the ground state geometries, relative stability, electronic structure,
and spectroscopic properties of PtCl, (n = 1-7) clusters. The bonding in these clusters is domi-
nated by covalent interaction. In neutral clusters, chlorine atoms are chemically bound to Pt up to
n = 5. However, in neutral PtClg and PtCl; clusters, two of the chlorine atoms bind molecularly
while the remaining bind as individual atoms. In the negative ions, this happens only in the case of
PtCl; cluster. The geometries of both neutral and anionic clusters can be considered as fragments
of an octahedron and are attributed to the stabilization associated with splitting of partially filled d
orbitals under the chloride ligand field. The electron affinity of PtCl, clusters rises steadily with n,
reaching a maximum value of 5.81 eV in PtCls. PtCl, clusters with n > 3 are all superhalogens with
electron affinities larger than that of chlorine. The accuracy of our results has been verified by carry-
ing out photoelectron spectroscopy experiments on PtCl, ™ anion clusters. © 2012 American Institute

of Physics. [http://dx.doi.org/10.1063/1.4719089]

. INTRODUCTION

Halogen atoms are among the most electronegative ele-
ments in the periodic table. Their high electron affinities (EA)
are associated with the electron shell closure rule and it takes
only one electron to close their outer most p° shell. Conse-
quently, they exist as negative ions and readily form ionic
compounds when reacting with electropositive elements, such
as Na. Chlorine has the highest electron affinity (3.62 eV) of
all elements in the periodic table and NaCl is a well-known
salt. However, stabilization of NaCl, requires the addition of
an extra electron. As this extra electron is now redistributed
over both the Cl atoms, the electron affinity of NaCl, is higher
than that of the Cl atom. Hence NaCl, is termed as a super-
halogen. Gutsev and Boldyrev'-? coined this word about 30
years ago to describe an entirely new class of molecules con-
sisting of a central metal atom surrounded by halogen atoms.
When the number of the halogen atoms exceeds the maxi-
mal valence of the metal atom, the resulting cluster becomes
a superhalogen. Superhalogens can thus be described by the
formula ML ;,+1),, where m is the maximal valence of the cen-
tral atom, M, and / is the valence of the electronegative ligand
L."2 Thus NaCl, (Ref. 3), MgCl; (Ref. 4), and AICl, (Ref.
5) are all superhalogens. Numerous superhalogen molecules
have been designed and discovered over the past 30 years and
these primarily consist of sp metal atoms'~!? at the core whose
maximal valence is easy to determine. However, the maximal
valence of transition metal atom is not easy to determine as
the extent of the participation of quasi-localized d electrons
in chemical bonding is unclear. For example, consider man-
ganese. It has an outer electronic configuration of 3d> 4s2.
Mn can be considered as having a valence of two when the
4s? electrons participate in chemical bonding. Thus, MnCl;
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can be a superhalogen and it is.'* Similarly, if all seven elec-
trons in 3d°> 4s? shells participate in chemical bonding, MnO,
will be a superhalogen and it is.!> Thus, a systematic study of
the onset of superhalogen behavior of transition metal based
molecules can be used to determine their maximal valence.
There has been considerable interest in recent years in study-
ing transition metal based superhalogens.'® Vertical electron
detachment energy as high as 12.63 eV in TazFi¢~ has been
predicted'” and the superhalogen property of this molecule is
consistent with the formula MLy, where the maximal va-
lence of Tais 5 (m =3 x 5 = 15).

In this sense PtFg is a unique molecule; it is the first
molecule which was shown to oxidize O, and noble gas
Xe, both of which have ionization energies slightly above
12 eV.'%19 Although, only part of the oxidizing ability
stemmed from the electron affinity of molecular PtFg, which
was estimated to be 6.76 eV,?° such molecules having high
electron affinity became of interest due to various materials
applications of oxidizing agents.?'=>* Pt with d°s' is a repre-
sentative transition metal whose valence is ambiguous. The
highest oxidation state of Pt as 46 in PtO3; has been investi-
gated by Andrews and co-workers.>* A computational study
on PtF, (n = 2,4,6,8) showed that PtF, itself is a superhalo-
gen with an electron affinity of 5.35 eV.? This would place
the nominal valence of Pt at 3 or lower. Advanced calculations
by Riedel®® show that Pt cannot hold more than six fluorine
atoms. In this study we have investigated the interaction of
Pt with Cl to see how many CI atoms can be bound chemi-
cally to Pt and how the electron affinities of PtCl,, compare
with those of PtF, clusters. The present work was further mo-
tivated by a recent photoelectron spectroscopy work of Wang
and Wang?’ who showed that PtCl;2~ dianion is unstable
against auto ejection of an electron, but the cluster was stable
long enough for the authors to measure the negative electron
affinity of PtCl,~. Our calculations were carried out using
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density functional theory (DFT) as well as at the coupled
cluster with singles and doubles and non-iterative inclusion
of triples, CCSD(T), level of theory. Photoelectron spec-
troscopy experiment on PtCl,~ anions was performed to vali-
date our theoretical results. In Sec. II we describe the compu-
tational and experimental methods. The results are discussed
in Sec. III and summarized in Sec. IV.

Il. METHODS
A. Computational procedure

Our conformational search was carried out using density
functional theory with hybrid B3LYP functional for exchange
and correlation potential. Wesendrup and Schwerdtfeger have
compared the calculated electron affinities of PtF, using DFT-
B3LYP with those obtained from MP2 and CCSD(T) meth-
ods, and concluded that the close agreement of MP2 and
CCSD(T) results with less expensive DFT-B3LYP method
justifies the use of the latter.”> Our previous calculations also
lend credibility to this choice.'® Nevertheless, we have re-
peated our calculations using the CCSD(T) level of theory to
examine the accuracy of the DFT results for PtCl, clusters.
For this, we used the geometries obtained at the B3LYP level
of theory without further optimization. This approach is jus-
tified as the geometries are not very sensitive to approxima-
tions in exchange and correlation. All our computations have
been performed using GAUSSIAN 03 package.?® Relativistic
effects of Pt were incorporated using the Stuttgart-Dresden-
Dunning (SDD) basis set. For Cl we used the all electron 6-
311 4+ G(d) basis set. The structures of neutral and anionic
PtCl, clusters were obtained by optimizing their geometries
without any symmetry constraints and with various starting
configurations where chlorine binds to Pt both chemically and
molecularly. The dynamical stability of the clusters was con-
firmed by vibrational frequency calculation. We calculated all
possible isomers with singlet and triplet spin multiplicities for
even electron systems and doublet and quartet spin multiplic-
ities for odd electron systems. States with higher spin multi-
plicities were also sampled, but they proved to be much higher
in energy.

B. Experimental procedure

Anion photoelectron spectroscopy was conducted by
crossing a mass-selected negative ion beam with a fixed-
energy photon beam and analyzing the energies of the resul-
tant photo-detached electrons. This technique is governed by
the well-known energy conserving relationship, hv = EBE
+ EKE, where hv, EBE, and EKE are the photon energy,
electron binding energy (transition energy), and the elec-
tron kinetic energy, respectively. The details of our appara-
tus have been described elsewhere.>>>*" Briefly, the photo-
electron spectra were collected on an apparatus consisting
of an ion source, a linear time-of-flight mass spectrometer
for mass analysis and selection, and a magnetic-bottle pho-
toelectron spectrometer for electron energy analysis (resolu-
tion ~35 meV at 1 eV EKE). The fourth harmonic (266 nm,
4.66 eV/photon) of a Nd:YAG laser and an ArF eximer laser
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(193 nm, 6.42 eV/photon) were used to photo-detach elec-
trons from the cluster anion of interest. Photoelectron spectra
were calibrated against the well-known atomic lines of the
copper anion.’!

The PtCl,,~ anions were generated by two different meth-
ods. In the first one an infrared desorption/photoemission
ionization source, which has been described in detail else-
where, has been used.? In short, low power infrared laser
pulses (1064 nm, 1.17 eV/photon) from a Nd:YAG laser
were used to desorb neutral molecules from a slowly mov-
ing graphite bar which was thinly coated with cisplatin,
cis-diaminedichloroplatinum (II), powder (purchased from
Alfa Aesar). Almost simultaneously, electrons were generated
by visible laser pulses (another Nd:YAG laser operating at
532 nm, 2.33 eV/photon) striking a rotating yttrium oxide
disk. PtCl,,~ anions with n < 3 were formed as a result of
cisplatin dissociation upon electron attachment in gas phase.
A pulsed gas valve provided a collisionally cooled jet of he-
lium to carry away excess energy and stabilize the resulting
anions. In the second method, PtCl,, clusters with n > 2 were
generated using a pulsed arc cluster ionization source, which
has been described in detail elsewhere.’? In brief, a ~30 us
long 150 V electrical pulse applied across anode and plat-
inum cathode of the discharging chamber containing 2 bar of
ultrahigh pure chlorine gas partially dissociates the chlorine
gas and vaporizes the platinum atoms. About 10 bar of ul-
trahigh purity helium gas then flushed the chlorine—platinum
plasma mix down in a 20 cm flow tube, where it reacts,
forms clusters, and cools. Anions generated by both meth-
ods were then mass selected for photoelectron spectroscopic
studies.

lll. RESULTS AND DISCUSSIONS

We begin our discussion with calculations of the equi-
librium geometries and relative stabilities of neutral clusters
carried out using DFT-B3LYP level of theory. We then focus
on the structures and relative stabilities of anionic clusters.
Finally, computed results on electron affinities are presented
and compared with photoelectron spectroscopy experiments.

A. Neutral clusters
1. Geometries

In Fig. 1 we present the lowest energy isomers of PtCl,
for n < 7. Two general observations can be immediately
made. First, in PtCl,, clusters up to n = 5 chlorine molecules
dissociate and CI atoms are chemically bound. However, in
neutral PtClg and PtCl; clusters two chlorine atoms bind
molecularly. This is in contrast to the geometries of neutral
PtF, clusters where all F atoms are known to bind chemically
up to n = 6. For PtClg the pseudo Oy, geometry with triplet and
singlet spin multiplicities are, respectively, 0.35 and 0.93 eV
higher than the reported molecular complex in Fig. 1. Clearly,
the higher electronegativity of fluorine helps to involve more
d electrons in bonding and made maximal valence of Pt higher
in PtF,. Second, the configurations of all the clusters can be
considered as being part of an octahedron, indicating that
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ligand field stabilization dictates the geometry. An additional
point is that for all even electron systems (PtCl,, PtCly, and
PtClg) the preferred spin multiplicity is triplet, while the pre-
ferred spin states for all odd electron systems are doublets.
We have not considered the effect of spin-orbit coupling on
the relative order of various spin states.’?3*

The bond lengths between Pt and Cl atoms range from
221 to 2.44 A in all clusters where Cl atoms are chemi-
cally bound. In neutral PtClg and PtCl; clusters the distances
between Pt and Cl atoms forming a molecular complex are
4.84 A and 2.60 A, respectively. The distance between the
Cl atoms in the Cl, molecular complex in these two clusters
is 2.06 A, which is same as the bond length of a free Cl,
molecule, at this level of computation. We will show in the
following that fragmentation pathways of these clusters are
consistent with these geometries. It is worth pointing out that
in PtE, clusters the Pt—F bond lengths vary between 1.86 A
to 1.94 10\, which is consistent with the smaller size of the F
ion.”

To understand the nature of bonding between Pt and
Cl atoms we have analyzed the natural bond orbital (NBO)
charge distribution. The charge on platinum in PtCl is 4+0.38
e, indicating that the ionic nature of the bond is low. This is not
surprising since the electronegativity of platinum is quite high
(2.2 in Pauling’s scale). The lowest energy isomer of PtCl; is
linear in accordance with the pure crystal field stabilization
energy (CFSE) argument.’> However, the preferred spin mul-
tiplicity of PtCl, is a triplet while the CFSE argument would
suggest a spin singlet state. This difference further points to
the fact that the formally d® Pt(Il) is not ionically bonded to
CI™ anions, and that considerable covalency is involved in
the bonding. This is supported by the NBO charge distribu-
tion where the charge on the Cl atom is —0.27 e compared to
—0.38 e in PtCl. The spin singlet state which is 0.61 eV higher
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in energy has a bent geometry. A combined spectroscopic
and theoretical analysis had already confirmed the structure
of PtCl, as linear.’® PtCl; is T-shaped and has a spin dou-
blet configuration. The NBO charge on one of the Cl atom is
—0.18 e while each of the other two CI atoms has a charge
of —0.27 e. The geometry of PtCly is square planar and its
spin multiplicity is a triplet. However, CFSE argument again
suggests a singlet square planar geometry resulting from a d®
configuration. The NBO charge on the Cl is further reduced to
—0.20 e confirming the covalent bonding features. A distorted
square pyramid structure is the lowest isomer for PtCls. CFSE
arguments also support a square pyramidal shape for a formal
d’ system over trigonal bipyramid geometry. The two elon-
gated Pt—Cl (2.42 A) bond and its 70° angle between them
are indication of an electron deficient multicenter bonding.
That is, chlorine is already facing difficulty in utilizing a fifth
electron from Pt. The bonding remains primarily covalent and
the charges on the Cl atoms vary from —0.10 e to —0.26 e. The
lowest isomer of PtClg contains a molecularly bound Cl,. This
is in contrast with the well discussed (distorted) octahedral
geometry for PtFg.3* A pseudo octahedral geometry for PtClg
is a minimum at both singlet and triplet states but expulsion
of a Cl; is exothermic.’” Even the structure given in Fig. 1 is
only 0.04 eV more stable than its dissociated product to PtCly
+ Cl,. Other halogen bonded and coordinated Cl, on PtCly
clusters exist in the floppy potential energy surface which are
all quite close in energy. An analogous situation exists for
PtCl; whose lowest isomer is composed of a Cl, molecule
bound to the Pt atom of PtCls. The net charge on Cl, is
+0.16 e which is lost to the PtCls portion of the PtCl; clus-
ter. In the case of PtClg, Cl, gained 0.01 e as here the Cl, is
an electron density acceptor. Results of PtClg and PtCl; sug-
gest that there cannot be further addition of atomic Cl on Pt.
Consequently, larger clusters were not explored.

(0.38e) (-0.38¢e) 180
(0.54¢) (-027e) )

2064

(-0.005¢)

(-012e) g

(0fle) €

FIG. 1. Geometries of PtCl, (blue Pt; green Cl). The NBO atomic charges are given on atoms and in parenthesis.
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FIG. 2. Unimolecular dissociation energies of neutral PtCl,. The lowest en-
ergy decomposition channels are joined by a green line.

2. Relative stability

The relative stability of the above clusters against disso-
ciation into CI atom or Cl, molecule was calculated using the
following equations:

AEqyomic = E[PtCl,_;] + E[C]] — E[PtC], ]

AEnotecular = E[PtCl, 2] + E[Cl] — E[PtCl, ].

The lower of these two energies yields the preferred dis-
sociation channel. The dissociation energies are plotted in
Fig. 2. As can be seen, the maximum Pt—Cl bond energy
(3.22 eV) is present in PtCl, indicating that the optimal va-
lence of Pt is two. For PtCl; the bond energy decreases con-

J. Chem. Phys. 136, 194305 (2012)

siderably. The lowest decomposition channel for PtCly is by
an expulsion of Cl,, which further confirms the stability of
PtCl,. PtCl, clusters dissociate by ejecting a Cl atom for
n < 3 and a Cl, molecule for n > 4. The endothermicity for
the Cl, dissociation from PtCls is 0.29 eV, which is also of
similar magnitude as the coordination energy of Cl, on PtCls
in the case of PtCl; (0.36 eV).

B. Anionic clusters
1. Geometries

The lowest energy structures of anionic PtCl,~ clusters
(Fig. 3) are similar to those of the neutrals for n < 5 and
PtCl;~, but differ significantly for PtCls~. Note that while
in neutral PtClg two Cl atoms formed a molecular complex,
in PtClg™ anion they all bind chemically. Two additional ge-
ometrical changes may be noted. The additional electron in
PtCl;~ introduces a Jahn-Teller distortion by elongating the
trans bonds. The electron deficient characteristics of neutral
PtCls are now eliminated with the additional electron as they
form a square pyramidal structure. As expected from the de-
creased ionic interaction the bond lengths of anion are longer
than those of the neutral. The exception is only for the elec-
tron deficient bonds present in neutral PtCls. Unlike neutral
clusters, however, the even electron systems (PtC1~, PtCl; ™,
PtCls~, PtCl;7) all have spin singlet states. Though a direct
comparison cannot be made because of difference in geome-
try, the additional electronic repulsive energy appears to over-
ride the advantage of exchange stabilization present in neutral
clusters. The odd electron systems have all doublet spins.

2. Relative stability

To determine the preferred pathways for fragmentation
of the anion clusters we need to calculate energies not only

(-040¢) (-l]_.El] e 180°
021e)  (0B0e) 8

0350 @

230A

(077e)

2304

FIG. 3. Geometries of PtCl,,~ anions (blue Pt; green Cl). The NBO atomic charges are given on atoms and in parenthesis.

Downloaded 18 May 2012 to 128.220.159.20. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



194305-5 Joseph et al.

J. Chem. Phys. 136, 194305 (2012)

TABLE I. Electron affinities of PtCl, clusters calculated at DFT-B3LYP and CCSD(T) levels of theory using

different basis functions.

B3LYP/SDD/6-311

CCSD(T)/SDD/6-311 CCSD(T)/SDD/6-311

B3LYP/SDD/ + G(3df)//B3LYP/SDD/ + G(d)//B3LYP/SDD/ + G(3df)//B3LYP/SDD/
6-311 + G(d) 6-311 + G(d) 6-311 + G(d) 6-311 + G(d)
(eV) (eV) (eV) (eV)
PtCl1 2.70 2.67 221 227
PtCl 3.68 3.57 3.27 3.31
PtCl3 4.43 4.58 4.46 4.54
PtCly 5.12 4.99 4.97 5.11
PtCls 5.81 5.69 5.64 5.84

against dissociation into CI atoms or Cl, molecules as has
been done for the neutral clusters, but also against the charge
carried by the fragments. This is achieved by calculating the
following three different dissociation energies:

AEyiomic = E[PtCl,_] + E[C]"] — E[PtCL, ],
AEyomic = E[PtCl_, 1+ E[CI] — E[PtCl ],

AEmolecular = E[PtCI;,Q] + E[CL,] - E[PtCI,l_]

These energies are plotted in Fig. 4 as a function of clus-
ter size. As in the neutral, the highest endothermic decompo-
sition energy is for PtCl, ~. The lowest decomposition channel
from PtCl;~ onward is via having the cluster retain the neg-
ative charge. This indicates that PtCl, (n > 3) clusters have
higher electron affinities than CI, and hence they are all su-
perhalogens (see below for further discussion). The lowest
decomposition channel for PtClg~ and PtCl;~ is by ejecting a
Cl, molecule. The dissociation energy of 0.29 eV for PtCl;~
is nothing but the coordination energy of Cl, to PtCls~. This
value is lower than the corresponding value for the neutral
(0.36 eV) since the negative charge makes the coordination
weak. This conclusion is supported by longer Pt—Cl, bond

®7 . —=— PtC[ = PtCl_ + CI
;. ~a- PtCI - PICI, + CI
e |- PICI - PtCr, + ClL
4 %
o~ ", \
?‘L 3 % Y b -
&
Y A
2.4 y \\
| |
---A
14
e
04
T b T . T E T . T i T . T 4
1 2 3 4 5 6 T
n of PtCI_

FIG. 4. Unimolecular dissociation energies of PtCl,~ anions. The lowest
energy decomposition channels are joined by a green line.

(2.62 A vs. 2.60 A) as well as lesser charge transfer (0.02 e
vs. 0.16 e) from Cl, in the anion.

C. Electron affinities

The electron affinities of PtCl, clusters were calculated
by taking the energy difference between the lowest energy
structures of neutral and anionic clusters. Vertical detachment
energy (VDE), on the other hand, measures the energy dif-
ference between the ground state of the anion and its neutral
cluster at the anion ground state geometry.

To examine the accuracy of the DFT based results we
have repeated the calculations on stable PtCl, using cou-
pled cluster, CCSD(T), level of theory. Calculations were also
repeated with a more extended basis set, namely, 6-311G
+ (3df). The computed electron affinities at both levels of the-
ory are compared in Table I. We note that with the exception
of PtCl and PtCl,, the results agree with each other within
0.2 eV, which is typically the accuracy attributed to the DFT
based results.

The EA and VDE values for PtCl, (n = 1-7) are plotted
in Fig. 5 and discussed below. There is a steady increase in
electron affinity till » = 5. Note that the electron affinity of
Pt atom is 2.07 eV at this computational level, which agrees

6.5 4
6.0—.
5.5—-
5.0—_
45-

4.0

EA/VDE (eV)

3.5 —a— Electron Affinity (EA)
#  Vertical Detachment Energy (VDE)

3.0

254

n of PtCI_

FIG. 5. Electron affinities of PtCl, and vertical detachment energies of
PtCl,,~ anions at B3LYP/SDD/6-311 + G(d).
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0.0 05 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Electron Binding Energy (eV)

FIG. 6. Photoelectron spectra (PES) of PtCl,~, PtCly~, and PtCls~. The
spectra were measured at photon energies of 4.66 eV (for PtCl,™) and
6.42 eV (for PtCly~ and PtCls ™).

well with the experimental value of 2.13 eV.*® Attaching a
highly electronegative Cl atom only marginally increases the
electron affinity of PtCl to 2.70 eV. An additional Cl raises
the electron affinity to 3.68 eV, which is comparable to the
electron affinity of Cl, namely, 3.62 eV. We should point out
that our calculated value for the EA of Cl atom is 3.72 eV.
As discussed earlier, the optimal valence of Pt is two. Thus,
an electron affinity of 3.68 eV for PtCl, is indeed surpris-
ing. To verify the accuracy of our prediction, we carried out
photoelectron spectroscopy experiment. The experimental re-
sult is given in Fig. 6. The photoelectron spectrum of PtCl,~

104
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08 - s -
074 -
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024 © e PtCl
o e PtCl
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2 g: Increase in electron density
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displays an onset at ~3.5 eV and a peak maximum at 3.83
eV. The onset provides an approximate value of the EA and
the peak maximum is a measurement of the VDE. The cal-
culated result at the B3LYP level of theory agrees well with
experiment.

An additional Cl atom further raises the electron affinity
to 4.43 eV, making PtCl; a super halogen. Though the rise
in electron affinity is not very dramatic, it may be noted that
PtCl; fits the formula suggested for the super halogen, with
the valence of Pt as two. We were unable to measure the EA
and VDE of PtCl; due to its poor intensity. The electron affin-
ity of PtCly is 5.12 eV and that of PtCls is 5.81 eV, the highest
among PtCl, series. Considering the nature of atomic binding
of Cl as the measure of the maximum valence of Pt, PtCls also
fits the formula of a superhalogen (m = 4). We succeeded in
measuring the PES of both these anions (Fig. 6). The exper-
imental EA’s of 5.1 eV for PtCly and 5.6 eV for PtCls agree
well with our calculated results in Table I.

The relative stability of anionic PtClg~ makes the elec-
tron affinity of PtClg (5.54 eV) higher that that of PtCly. The
noticeable difference in VDE and EA for PtClg (cf. Fig. 5)
also comes from the difference in structure between the anion
and the neutral. While neutral PtClg consists of a molecular
Cl,, its anionic counterpart has all Cl atoms bound chemi-
cally. PtCl; has similar electron affinity (5.73 eV) as that of
PtCls which can be expected from their structures.

Since the high electron affinity is dictated by the stability
of the anion, and consequently the distribution of the addi-
tional electron, we examined how the atomic charges on an-
ionic clusters vary with respect to neutral clusters. In Fig. 7(a)
we plot the NBO atomic charges on neutral and anionic
PtCl, clusters. Due to high electronegativity of Pt, the posi-
tive charge on Pt is low and increases only marginally with
each additional chlorine atom. In the anion, as the number of
CI atoms increase, the additional electron is almost fully dis-
tributed over chlorine atoms as evidenced by the narrowing
of the gap between the two curves and merging at around

Mi Decrease in electron density

FIG. 7. (a) NBO charges on Pt for neutral and anionic PtCl,. (b) Electron density difference plot (anion—neutral) of the PtCl, clusters in the anion geometry.

The iso-surface value is 0.001 e/bohr.
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n = 4 in Fig. 7(a). Thus, the favorable delocalization of
the extra electron over all the electronegative chlorine atoms
makes the anion lower in energy and the neutral cluster a su-
perhalogen. The distribution of the extra electron is explic-
itly analyzed by subtracting the electron density of the neu-
tral clusters from anions. Figure 7(b) shows the iso-surface
(0.001 e/bohr?) of the electron density difference. This com-
plements the results obtained from the NBO analysis and
shows that the added electron in the anion is distributed over
all the Cl atoms.

IV. CONCLUSION

In summary, a systematic study of PtCl, (n < 7) clus-
ters revealed that tethering of three Cl atoms are sufficient
to increase the electron affinity of PtCl; to 4.43 eV, making
it a superhalogen. This indicates that the nominal valence of
Pt is two. However, continued increase in electron affinity,
the dissociative binding of CI in PtCl,, clusters, the nature of
Pt—ClI bond, and the dissociation energies of the clusters all
point to the fact that the maximal valence of Pt is four. Thus,
PtCls has the highest electron affinity (5.81 eV) in this se-
ries. These results differ from those of PtF,, clusters where the
electron affinities continue to increase even up to n = 6. This
shows that the oxidation state of Pt depends upon the element
it is interacting with. We have validated our theoretical re-
sults with photoelectron spectroscopy experiment on PtCl, ™,
PtCl4~, and PtCl5 .
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